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Computational simulation is a key enabling technology in engineering, sci-
ence and other quantitative fields. Coherent spatio-temporal dynamics, the
main focus of application of this project, is the preeminent example of com-
plex system behaviour as it emerges from the interactions of many similar
components at each locale in space.

For the purposes of discussion consider that the microscopic model is one in
the wide class of pde’s in the form

ut = Lu + f(u) + q(u, t) (1)

where: x is position in one or more spatial dimensions; u(x, t) is some scalar
or vector field, such as fluid velocity and pressure; L is a dissipative linear
operator, such as ∇2; f(u) includes other autonomous terms representing
nonlinear advection, reaction, etc.; and q(u, t) is some time dependent control
or possibly stochastic forcing [22]. Among many physically relevant examples
are Burgers’ equation [1, e.g.], the Brusselator [9, §3], Liouville’s equation [13]
and the Swift–Hohenberg equation [4, e.g.].

Consider forming a numerical solution of (1) by implementing the method
of lines through discretising in the spatial variable x and integrating in time
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as a set of ordinary differential equations, sometimes called a semi-discrete
scheme [5, 6, e.g.]. A finite difference approximation to the spatial structure
of (1) on a 1D regular grid is straightforward; for example, a linear diffusion
term on a regular grid, say xj = jh for some grid spacing h, is

∂2u

∂x2
=
uj+1 − 2uj + uj−1

h2
+O

(
h2
)
,

where uj is the value of u at the grid points xj. However, there are many
differing valid alternatives for a nonlinear term such as the self-advection uux:
two possibilities are

u
∂u

∂x
=
uj(uj+1 − uj−1)

2h
+O

(
h2
)

=
u2

j+1 − u2
j−1

4h
+O

(
h2
)

;

and a third is the 1 : 2 mix of the above two suggested by Fornberg [7]
and used to improve stability [5, e.g.]. The best choice depends upon how
the discretisation of the nonlinearity interacts with the dynamics of other
terms. The traditional approach of considering the discretisation of each
term in the equation separately does not answer. To find the best discreti-
sation we consider the complex interaction of all terms in the pde (1) in
a “holistic” approach that involves resolving microscale subgrid structures
and their evolution. Centre manifold techniques construct approximations
based upon the principle of capturing an exponentially attractive manifold
of actual solutions. The approximation is consequently invariant under any
valid algebraic rewriting of the governing equations and preserves symme-
tries. Jones [11] argue that quite generally there exist good approximations
to such attractive inertial manifolds. One core challenge of this project is
to actually construct effective approximations and to give general theoreti-
cal support so that modern ideas become practical tools for engineers and
scientists.

Centre manifold theory is a powerful tool for the modelling of complex dy-
namical systems [17, 18, 8, e.g.] such as dispersion [24, 16, e.g.], thin fluid
films [2, 19, 25, e.g.], stochastic systems [27, 28], control [12, e.g.] and turbu-
lent floods [15]. Based upon modifying linear dynamics the theory guarantees
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that an accurate and relevant low-dimensional description of the nonlinear
dynamics may be deduced. We currently place the discretisation of a non-
linear pde such as (1) within the purview of centre manifold theory by the
following artifice; such adaptation also proves effective in thin fluid flows [19]
and dispersion [23]. Tessellate the spatial domain into finite size elements,
say there are m elements of size h, and then introduce a homotopy parame-
ter γ, 0 ≤ γ ≤ 1, parametrising “internal boundary conditions” (ibc) [13, 20]
between each element:

∂uo

∂n
=
∂ui

∂n
, (1− γ)

h

2

(
∂uo

∂n
+
∂ui

∂n

)
= γ

(
uo − ui

)
, (2)

and its higher order analogues [14], where ∂
∂n

is the derivative normal to the
boundary, ui is from the element under consideration (inside) and uo is from
the adjacent element (outside). When γ = 1 these reduce to conditions en-
suring appropriate continuity between adjacent elements. When γ = 0 they
reduce to effectively insulating conditions. We then treat terms multiplied
by γ as “nonlinear” perturbations to the insulated dynamics. Thus in the
“linear” dissipative dynamics governed by ut = Lu the field u in each ele-
ment evolves exponentially quickly (typically in a time O (h2) for a diffusive
system) to some constant value in the jth element, say u = uj . But in the
presence of the nonlinear terms and the coupling between the elements when
γ 6= 0, the values uj associated with each element evolve in time. Centre
manifold theory assures three things for the system of coupled elements: the
existence of an m dimensional centre manifold parametrised by grid values uj;
the relevance of the m dimensional dynamics as an accurate and stable model
of the original dynamics (1); and that we may systematically approximate
the subgrid scale structures and the corresponding macroscale evolution. Im-
portantly, symmetries of the pde (1), compatible with the ibc (2), are fully
maintained in the analysis. These dynamics on the centre manifold form a
sound and systematic computational model on the macroscale h.

It might be argued that the dynamics of the pde (1) recovered at γ = 1 is
unrelated to that of the derived discrete model which is based upon asymp-
totics about γ = 0. But we routinely use asymptotic expansions at finite
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values of a notionally small parameter. The practical issue here is whether
the expansion converges at γ = 1 . In application, our approach converges
to a global spectral discretisation of Burgers’ equation [20, Appendix]. We
additionally ensure high order consistency in the limit h → 0 [21] by the
effectively near identity modification of the ibc’s (2) to

uo(xj±1)− ui(xj) = γ[ui(xj±1)− ui(xj)] . (3)

That the modelling process satisfies these two independent asymptotic lim-
its provides wonderful support for the proposed approach. For example, in
Burgers’ equation it seems best to discretise the nonlinear advection uux [20]
with a higher order correction which automatically improves the stability and
accuracy of the numerical model. Indeed following Foias [5] [§2.1] we have
found our holistic discretisation is nonlinearly stable when other discretisa-
tions are not. We need to be inventive in exploring and then analysing various
options for the form of the coupling in order to ensure best performance of
the resulting computational models.

This coupling between elements is a fundamental issue for multiscale mod-
elling in general. Modification of the coupling of patches in the gap-tooth
scheme [10, 26] achieves higher order consistency by being asymptotically
consistent with (3). Further, the extension of the subgrid fields outside of
the element, ui(xj±1) in (3) is analogous to the solution outside of their finite
elements which Chen [3] required in their multiscale modelling.
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