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Chapter 1

Financial indices appear
to be stochastic processes

Exercises
1.1. Get your friends and family to play this more interactive game

that illustrates key aspects of stochastic mathematics in ap-
plication to finance.

1. Mark out on a big sheet of paper, a sequence of 30
squares, and label them consecutively 0 (bankrupt), 1,
1, 2, 2, 3, 3, 4, . . . , 14, 14, 15 (millionairedom). Each of
these squares represents one state in a 30 state Markov
chain. Imagine each state represents the value of some
asset such as the value of a small business that each
player is managing.

2. Give each player a token and a six sided die.

3. At the start place each token on the second “2”, the fifth
state. Imagine this corresponds to the small business
having an initial value of $200,000.

5



6 Chapter 1. Financial indices appear to be stochastic processes

4. Each turn in the game corresponds to say one year in
time. In each year business may be poor or may grow
depending upon how other businesses operate. Thus, in
each turn,

(a) on the count of three, each player extends a hand
showing either one finger or no fingers;

(b) the players who are in the minority then move up
some states (that is, if the number of players who
show one finger is more than those showing none,
then the players showing none move up some states,
and vice versa);

(c) the players who are in the majority roll their die and
move down some states if they roll 1, . . . , 4, and stay
in the same state upon rolling 5 or 6.

But the number of states (squares) they move is given
by the number written in each square. Thus in the first
move, because the fifth square/state is has a “2”: a player
moving up moves from the fifth square to the seventh
square; and a player moving down moves to the third
square.

That the number written in each square is (roughly) pro-
portional to the position of the square in the sequence
corresponds to the financial reality that small businesses
usually grow/shrink by small amounts, whereas big com-
panies grow/shrink by big amounts. Investors expect re-
turns in proportion to their investment.

5. Each player continues to role their die and move until
they reach 0 or 15. That is, imagine they continue to
operate their business until they either go bankrupt or
reach millionairedom.

Questions:

1. Why might you expect each business to grow? that is,



Exercises 7

why might you expect each player to reach the ‘million-
airedom’ state?

2. When you play it, roughly what proprotion of players do
reach ‘millionairedom’? and what proportion go ‘bankrupt’?

3. How do you explain the actual results?
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Chapter 2

Ito’s stochastic calculus
introduced

Example 2.1 (Interpret SDEs carefully) What if one interprets
the sde dX = βXdW as the difference equation ∆Xn = βXn+1∆Wn?
We proceed similarly by rearranging for Xn+1/Xn:

Xn+1 − Xn = βXn+1∆Wn⇒ Xn+1

Xn
− 1 =

Xn+1

Xn
β∆Wn

⇒ Xn+1

Xn
(1− β∆Wn) = 1

⇒ Xn+1

Xn
=

1

1− β∆Wn
.

Now recall the example solution for a multiplicative noise relies on
the observation

∆ logXn = logXn+1 − logXn = log
Xn+1

Xn
.

9



10 Chapter 2. Ito’s stochastic calculus introduced

Here, then

∆ logXn = log
1

1− β∆Wn
= − log(1− β∆Wn)

= β∆Wn + 1
2
β2∆W2

n + · · ·

Recalling that after summing many small increments, on relatively
large scales ∆W2 = ∆t so summing both sides of the above gives

logXn − logX0 = β(Wn −W0) +
1
2
β2(tn − t0).

Using t0 =W0 = 0 and tn = t then

X(t) = X0 exp
[
1
2
β2t+ βW(t)

]
.

In contrast to the standard definition, this predicts deterministic
growth! One must be careful to use the standard ‘Ito interpretation’
of stochastic differential equations.

Exercises
2.1. What if one interprets the sde dX = βXdW as the difference

equation ∆Xn = β1
2
(Xn+1 + Xn)∆Wn? Deduce that the so-

lution of the sde is the so-called ‘Stratonovich interpretation’
X(t) = X0 exp

[
βW(t)

]
.

2.2. You are given that X(t) is a stochastic process with differential
dX = αXdt + βXdW . Use Ito’s formula to deduce that the
stochastic process Y(t) = 1/X(t) has a differential with drift
and volatility similarly linear in Y.
Solution: dY = (−α+ β2)Y dt− βY dW .



Chapter 3

The Fokker–Planck
equation describes the
probability distribution

This chapter is otherwise blank.
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Chapter 4

Stochastic integration
proves Ito’s formula

This chapter is otherwise blank.
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Chapter 5

Introducing numerical
methods for SDEs

Chapter 1 defined the solution of the Ito sde

dX = a(t, X)dt+ b(t, X)dW . (5.1)

via the finite difference approximation

∆Xj = a(tj, Xj)∆tj + b(tj, Xj)∆Wj (5.2)

for ∆W ∼ N(0, ∆tj). Then, with care, in the limit ∆tj → 0 , the
finite difference approximation Xj → X(tj), the Ito sde solution. A
simple numerical scheme is to use (5.2) for some small finite time
steps, ∆tj = h say.

Unfortunately, the error in (5.2) is poor: the numerical Xj =

X(tj) +O
(√
h
)
. Other numerical schemes have better errors at the

cost of coding more computation.
This chapter develops some theory behind more accurate meth-

ods such as this scheme related to the deterministic Improved Euler
(Heun) method: for the sde (5.1) and time steps h compute

k1 = ha(tj, Xj) + (∆Wj − Sj
√
h)b(tj, Xj),

15



16 Chapter 5. Introducing numerical methods for SDEs

k2 = ha(tj+1, Xj + k1) + (∆Wj + Sj
√
h)b(tj+1, Xj + k1),

Xj+1 = Xj +
1
2
(k1 + k2). (5.3)

As usual choose ∆Wj =
√
hZj where random Zj ∼ N(0, 1); also

choose Sj = ±1 ‘randomly’ and independent of the increment ∆Wj.
Our challenge in this chapter is to see that this and other numerical
schemes do indeed approximate the solution of the Ito sde (5.1), and
to determine the order of error, which for this scheme (5.3) is O

(
h
)

(Theorem 5.11).
Corollary 5.12 establishes that the scheme (5.3) with S = 0

(instead of S = ±1) solves the Stratonovich interpretation of the
sde (5.2) to errors O

(
h
)
.

Kloeden [2] elaborates another introduction to numerical meth-
ods for sdes.

5.1 Iterated integrals create numerical
approximations

Example 5.1 (Multiple integrals improve accuracy) Consider
the sde dX = XdW . This sde is shorthand for the Ito integral

Xt = X0 +

∫t
0

Xs dWs , (5.4)

Over a small time interval ∆t = h this integral gives Xh = X0 +∫h
0
Xt dWt . Use this as the starting point for an iteration to provide

successively more accurate approximations to Xh.

1. Substitute (5.4) into the integrand:

Xh = X0 +

∫h
0

Xt dWt

= X0 +

∫h
0

X0 +

∫t
0

Xs dWs dWt
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= X0 +

∫h
0

X0 dWt +

∫h
0

∫t
0

Xs dWs dWt

= X0 + X0 ∆W + remainder.

Ignoring the remainder gives the classic Euler step for sde (5.4):

Xh = X0 + X0 ∆W . (5.5)

2. Substitute (5.4) into the integrand of the remainder:

Xh = X0 + X0 ∆W +

∫h
0

∫t
0

X0 +

∫s
0

Xr dWr dWs dWt

= X0 + X0 ∆W +

∫h
0

∫t
0

X0 dWs dWt

+

∫h
0

∫t
0

∫s
0

Xr dWr dWs dWt

= X0 + X0 ∆W + X0
[
1
2
(∆W)2 − 1

2
h
]

+ remainder.

Ignoring the remainder gives the Milstein approximation for
sde (5.4):

Xh = X0 + X0 ∆W + X0
[
1
2
(∆W)2 − 1

2
h
]
. (5.6)

Observe it has the drift term.

3. Substitute (5.4) into the integrand of the remainder:

Xh = X0 + X0 ∆W + X0
[
1
2
(∆W)2 − 1

2
h
]

+

∫h
0

∫t
0

∫s
0

X0 +

∫r
0

Xq dWq dWr dWs dWt

= X0 + X0 ∆W + X0
[
1
2
(∆W)2 − 1

2
h
]

+

∫h
0

∫t
0

∫s
0

X0 dWr dWs dWt
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+

∫h
0

∫t
0

∫s
0

∫r
0

Xq dWq dWr dWs dWt

= X0 + X0 ∆W + X0
[
1
2
(∆W)2 − 1

2
h
]

+ X0
[
1
6
(∆W)3 − 1

2
h∆W

]
+ remainder.

Ignoring the remainder gives the next numerical approxima-
tion for the sde (5.4):

Xh =X0 + X0 ∆W + X0
[
1
2
(∆W)2 − 1

2
h
]

+ X0
[
1
6
(∆W)3 − 1

2
h∆W

]
. (5.7)

4. One could continue this iteration indefinitely in this simple
example giving successively more accurate numerical approx-
imations (they involve Hermite polynomials). The key is the
repeated use of the Ito formula to transform the integrand.

Figure 5.1 plots the three approximate numerical schemes for
one realisation of the sde (5.4). The approximations do seem to
converge to the exact X(t).

Example 5.2 (General noise integrals) Now consider the more
general sde

dX = b(X)dW . (5.8)

Over a small time interval ∆t = h this sde is shorthand for the
integral

Xh = X0 +

∫h
0

b(Xt)dWt .

Use this integral as the starting point for an iteration to provide
successively more accurate approximations to Xh. But now the in-
tegrand is a nonlinear function of the process Xt so we need the
stochastic chain rule for functions of a stochastic process:

d
[
f(X(t))

]
= f ′ dX+ 1

2
f ′′ dX2 + · · ·
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Figure 5.1. one realisation of the example sde (5.4) with
the three different numerical schemes for ∆t = h = 1/8 : blue, Eu-
ler scheme (5.5); green, Milstien scheme (5.6); and red, next order
scheme (5.7).

= f ′bdW + 1
2
f ′′b2 dW2 + · · ·

= f ′bdW + 1
2
f ′′b2 dt

upon remembering that, in effect, ‘dW2 = dt’. For the ‘pure at
heart’, Ito’s integral formula is more precise:

f(Xt) = f(X0) +

∫t
0

f ′(Xs)b(Xs)dWs +

∫t
0

1
2
f ′′(Xs)b

2(Xs)ds

= f0 +

∫t
0

f ′sbs dWs +

∫t
0

1
2
f ′′s b

2
s ds . (5.9)

1. Substitute (5.9) into the integrand of Xh = X0 +
∫h
0
b(Xt)dWt
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with the choice f = b:

Xh = X0 +

∫h
0

b(Xt)dWt

= X0 +

∫h
0

{
b0 +

∫t
0

b ′
sbs dWs +

∫t
0

1
2
b ′′
s b
2
s ds

}
dWt

= X0 +

∫h
0

b0 dWt +

∫h
0

∫t
0

b ′
sbs dWs dWt +

∫h
0

∫t
0

1
2
b ′′
s b
2
s dsdWt

= X0 + b0 ∆W + remainder

Ignoring the two integrals forming the remainder gives the clas-
sic Euler step for the sde (5.8).

2. Substitute (5.9) into the first integrand of the remainder with
the choice f = b ′b:

Xh = X0 + b0 ∆W

+

∫h
0

∫t
0

{
b ′
0b0 +

∫s
0

(b ′
rbr)

′br dWr +

∫s
0

1
2
(b ′
rbr)

′′b2r dr

}
dWs dWt

+

∫h
0

∫t
0

1
2
b ′′
s b
2
s dsdWt

= X0 + b0 ∆W +

∫h
0

∫t
0

b ′
0b0 dWs dWt

+

∫h
0

∫t
0

∫s
0

(b ′
rbr)

′br dWr dWs dWt +

∫h
0

∫t
0

1
2
b ′′
s b
2
s dsdWt

+

∫h
0

∫t
0

∫s
0

1
2
(b ′
rbr)

′′b2r drdWs dWt

= X0 + b0 ∆W + b ′
0b0

[
1
2
(∆W)2 − 1

2
h
]
+ remainder

Ignoring the three integrals forming the remainder gives the
Milstein step for the sde (5.8):

X1 = X0 + b0 ∆W + b ′
0b0

[
1
2
(∆W)2 − 1

2
h
]
. (5.10)
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3. Evidently this successive refinement may be continued, but
with horribly convoluted integrals.

Order of error The Ito isometry bounds the variance of the re-
mainder. Since the remainder has zero mean and is independent
from step to step, then the sum of the errors grows like

√
n (the

variance of the sum is the sum of the variances).

Lemma 5.3. The Ito integrals
∫b
a
f dW and

∫d
c
gdW are indepen-

dent when the domains of integration do not overlap, that is, when
a < b ≤ c < d or c < d ≤ a < b .

Proof. Here consider only piecewise constant stochastic integrand
f and g. Then the result follows for more general integrands by
similar stochastic limiting arguments to those in Chapter 4. For

the two partitions of the two Ito integrals
∫b
a
f dW =

∑
j fj∆Wj and∫d

c
gdW =

∑
k gk∆Wk . Thus the expectation

E

[∫b
a

f dW ×
∫d
c

gdW

]

=E

∑
j

fj∆Wj

×(∑
k

gk∆Wk

)
=E

∑
j,k

fj∆Wj gk∆Wk


=
∑
j,k

E [fj∆Wj gk]E [∆Wk]

since for domains a < b ≤ c < d the increment ∆Wk is inde-
pendent of of the other stochastic quantities in each term. But
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E[∆Wk] = 0 and so the entire sum is zero. Consequently, the cor-

relation E
[∫b
a
f dW ×

∫d
c
gdW

]
= 0 which implies the two integrals

are stochastically independent.

Example 5.4 (Reformulate without derivatives) The Milstein
scheme (5.10) contains a derivative that we may not know. Rewrite
as

X1 = X0 + ∆W b0 +
1
2
(∆W +

√
h)(∆W −

√
h)b ′

0b0

Recognise that the derivative term may be approximated by

b ′
0b0 ≈

b[X0 + (∆W ±
√
h)b0] − b(X0)

∆W ±
√
h

.

At this stage we are free to choose ± arbitrarily: we may use this
freedom to improve stability, or to reduce error, or something. More
research may decide.1 Let X̃1 = X0+(∆W±

√
h)b0 and b̃1 = b(X̃1),

then a derivative free scheme is

X1 = X0 + ∆W b0 +
1
2
(∆W ∓

√
h)(b̃1 − b0)

= X0 +
1
2
b0(∆W ±

√
h) + 1

2
b̃1(∆W ∓

√
h)

= 1
2
X̃1 +

1
2

[
X0 + (∆W ∓

√
h)b̃1

]
Figures 5.2 and 5.3 give one example to show convergence of reali-
sations is O

(
h
)
.

Alternatively, we rewrite this scheme as

k1 = (∆W ±
√
h)b(X0),

k2 = (∆W ∓
√
h)b(X0 + k1),

X1 = X0 +
1
2
(k1 + k2). (5.11)

1Empirical numerical experiments suggest to choose sign(−∆W).
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X
(t
)

t

Figure 5.2. One realisation of the solution to dX =
sin(X)dW , X(0) = 1 , with varying sizes of time step.

This form is an interesting analogy with the deterministic improved
Euler method.

Example 5.5 (Stability of derivative free) The derivative free
scheme has stability unaffected by the choice of signs. Following
Higham [1], apply the scheme to the sde dX = βXdW , that is, set
b(x) = βx . Consequently X̃1 = X0

[
1+(∆W±

√
h)β

]
X0 and a little

algebra then gives the recurrence X1 = X0
[
1 + ∆Wβ + 1

2
(∆W2 −

h)β2
]
. Since this recurrence is independent of the choice of signs,

then the scheme’s stability appears independent of the choice.
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r
m
s

er
ro

r

time step h

Figure 5.3. error at time t = 1 of 700 realisations of
dX = sin(X)dW , X(0) = 1 , as a function of time step showing the
error ≈ 0.15 h0.97 (the error is estimated by the difference from the
result at the smallest time step).

5.2 A simple Runge–Kutta method avoids
derivatives

Now consider a numerical scheme for the general sde (5.1) that has
only one source of noise. With little justification as yet, let’s explore
the appealing generalisation (5.3) of the scheme (5.11). This scheme
appears to be consistent with the Milstein scheme (5.10), and as the
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X
(t
)

t

Figure 5.4. one realisation of the sde in Example 5.6 at
different step sizes h. The numerical solutions do appear to converge
to a solution as step size h→ 0 .

volatility b→ 0 the scheme reduces to the well known deterministic
improved Euler.

Questions?? Does this scheme generalise to vector X?? (I think
so) and to multiple noises?? (hmmmm)
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r
m
s
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ro

r

time step h

Figure 5.5. averaging over 700 realisations of Example 5.6
at each of many different step sizes shows that, at t = 1 , the error
to the analytic solution decreases quadratically, like h2.

5.2.1 Empirical evidence indicates O
(
h
)
errors

Example 5.6 Let’s try the numerical scheme (5.3) on the sde

dX =

[
2X

1+ t
+ (1+ t)2

]
dt+ (1+ t)2dW .

Starting from X0 = 1 , Ito’s formula shows this sde has solution
X = (1 + t)2(1 + t + W). Figure 5.4 shows one realisation of a
solution for different time steps. Figure 5.5 plots the rms relative
error in the numerical solutions at time t = 1 . On the log-log plot
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it is apparent that the error decreases quadratically: a least squares
fit gives2

rms error ≈ 5.2 h1.99.
Such rapid quadratic decrease in error is a surprise, generally expect
only a linear decrease in error as in the next example.

Example 5.7 Second, let’s try the numerical scheme (5.3) on the
sde

dX =
[
1
2
X+

√
1+ X2

]
dt+

√
1+ X2 dW .

Starting from X0 = 0 , Ito’s formula shows this sde has solution
X = sinh(t +W). Figure 5.6 shows one realisation of a solution for
different time steps. Figure 5.7 plots the rms relative error in the
numerical solutions at time t = 1 . The log-log plot indicates the
error decreases at the expected linear rate: a least squares fit gives3

rms error ≈ 1.34 h1.01.

Example 5.8 Third, let’s summarise the accuracy of the numerical
scheme (5.3) applied to several more sdes.

1. rms error ≈ 0.88 h0.98, plotted in Figure 5.8, for sde dX =
1
2
(X − t)dt + (X − t − 2)dW , X0 = 3 , with solution X =
2+ t+ exp(W).

2Regarding the choice of S in the scheme (5.3): using S = − sign(∆W) gives
error ≈ 8.2h1.99 about 60% bigger; using random S gives between error ≈
6.9h1.99; using alternating S = (−1)j at time step j gives error ≈ 5.6h1.99; but
using one sign all the time is bad, showing a reduction of order, error ≈ 1.9h1.45
for all plus and error ≈ 4.1h1.53 for all minus. The smallest error, as reported
above, appears to arise from the choice S = sign(∆W).

3Regarding the choice of S in the scheme (5.3): using S = − sign(∆W) gives
bigger error ≈ 1.76h1.00; using independently random S gives similar error ≈
1.45h0.99; using alternating S = (−1)j at time step j gives error ≈ 1.66h1.01; but
using one sign all the time is bad, showing a reduction of order, error ≈ 0.41h0.50
for all plus and error ≈ 0.56h0.53 for all minus. The smallest error by a little, as
reported above, appears to arise from the choice S = sign(∆W).
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X
(t
)

t

Figure 5.6. one realisation of the sde in Example 5.7 at
different step sizes h. The numerical solutions do appear to converge
to a solution as step size h→ 0 .

2. rms error ≈ 0.81 h1.01, plotted in Figure 5.9, for sde

dX =

[
X

1+ t
− 3
2
X

(
1−

X2

(1+ t)2

)2]
dt

+ (1+ t)

(
1−

X2

(1+ t)2

)3/2
dW ,

X0 = 0 , with solution X = (1+ t)W/
√
1+W2.

3. rms error ≈ 0.06 h2.00 for the sde dX = −Xdt + e−tdW ,
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time step h

Figure 5.7. averaging over 700 realisations of Example 5.7
at each of many different step sizes shows that, at t = 1 , the error
to the analytic solution decreases linearly in time step h.

X0 = 0 , with solution X = e−tW(t); additive noise appears to
give second order accuracy.

4. rms error ≈ 0.58 h0.99 for the sde dX = XdW , X0 = 1 , with
solution X = exp[W(t) − t/2].

5. rms error ≈ 0.36 h1.01 for the sde dX = −X(1− X2)dt+ (1−
X2)dW , X0 = 0 , with solution X = tanh[W(t)].
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r
m
s

er
ro

r

time step h

Figure 5.8. Averaging over 700 realisations of Exam-
ple 5.8.1 at each of many different step sizes shows that, at t = 1 ,
the error to the analytic solution is of first order in step size h.

5.2.2 Some theory proves O
(
h
)
accuracy

Proofs that numerical schemes do indeed approximate sde solutions
are often complex. My plan here is to elaborate successively more
complicated cases, with the aim that you develop a feel for the anal-
ysis before it gets too complex. The first lemma proves that the
Runge–Kutta like scheme (5.3) approximates the simplest Ito inte-

grals X =
∫b
a
b(t)dW to first order in the time step. Second, we

explore linear sdes with additive noise and identify a class of sdes
when the scheme (5.3) is of second order.
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Figure 5.9. Averaging over 700 realisations of Exam-
ple 5.8.2 at each of many different step sizes shows that, at t = 1 ,
the rms error to the analytic solution is of first order in step size h.

One outcome of this section is to precisely ‘nail down’ the req-
uisite properties of the choice of signs Sj in the scheme (5.3).

Lemma 5.9. The Runge–Kutta like scheme (5.3) has O
(
h
)

errors
when applied to dX = b(t)dW for functions b(t) twice differentiable.

Proof. Without loss of generality, start with the time step from
t0 = 0 to t1 = t0 + h = h . Applied to the very simple sde dX =
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b(t)dW the scheme (5.3) computes

k1 = (∆W − S
√
h)b0 , k2 = (∆W + S

√
h)b1 ,

and then estimates the change in X as

∆X̂ = 1
2
(b0 + b1)∆W + 1

2
(b1 − b0)S

√
h ,

where b0 = b(0) and b1 = b(h). In comparison we use the classic
polynomial approximation theorem [3, p.800, e.g.] to relate this to
the exact integral. Here write the integrand as the linear interpolant
with remainder:

b(t) = 1
2
(b1 + b0) +

1
h
(b1 − b0)(t− h/2) +

1
2
t(t− h)b ′′(τ)

for some 0 ≤ τ(t) ≤ h . Then the exact change in X(t) is

∆X =

∫h
0

b(t)dW = 1
2
(b1 + b0)∆W + 1

h
(b1 − b0)

∫h
0

(t− h/2)dW

+ 1
2

∫h
0

t(t− h)b ′′(τ)dW . (5.12)

That is, the true integral change ∆X = ∆X̂+ ε0 where the error

ε0 =
b1 − b0
h

[
−1
2
Sh3/2 +

∫h
0

(t− h/2)dW

]
+1
2

∫h
0

t(t−h)b ′′(τ)dW .

How big is this error? Take expectations to see that E[ε0] = 0
generally provided E[S] = 0 . Thus the choice of signs S in the
scheme (5.3) cannot be fixed non-zero: the signs S must be chosen
randomly with mean zero.

Now compute the variance to see the size of the fluctuations
in the error. Var[ε0] = E[ε20]. Look at various contributions in
turn. First E[(Sh3/2)2] = h3 E[S2] = O

(
h3
)
. Provided we chose the

signs S independently of the noise W then there are no correlations
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between the S terms and the other two terms. Second,

E

(∫h
0

(t− h/2)dW

)2 =

∫h
0

(t− h/2)2dt by Ito isometry

= 1
12
h3 = O

(
h3
)
.

Third, by the Ito isometry

E

(∫h
0

t(t− h)b ′′(τ)dW

)2 =

∫h
0

t2(t− h)2b ′′(τ)2dt

≤ B22
∫h
0

t2(t− h)2dt =
1

30
B22h

5,

when the second derivative is bounded, |b ′′(t)| ≤ B2 . Lastly, the
correlation between these previous two integrals is small as∣∣∣∣∣E

[∫h
0

(t− h/2)dW

∫h
0

t(t− h)b ′′(τ)dW

]∣∣∣∣∣
=

∣∣∣∣∣
∫h
0

(t− h/2)t(t− h)b ′′(τ)dt

∣∣∣∣∣
≤ B2

∫h
0

|(t− h/2)t(t− h)|dt = O
(
h4
)
.

Hence the local error is dominated by the first two contributions and
has Var[ε0] = O

(
h3
)
.

Now take n = O
(
1/h

)
time steps, then the scheme (5.3) ap-

proximates the correct solution with error ε =
∑n−1
j=0 εj . Firstly,

E[ε] = 0 as E[εj] = 0 for all time steps. Secondly, as the errors on
each time step are independent, the variance

Var[ε] =

n−1∑
j=0

Var[εj] = nVar[ε0] = O
(
nh3

)
= O

(
h2
)
.
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Thus, for the sde dX = b(t)dW, the scheme (5.3) has global error
of size O

(
h
)
.

This second lemma addresses a little more general sdes. It not
only serves as a ‘stepping stone’ to a full theorem, but illustrates two
other interesting properties. Firstly, we discover a class of sdes for
which the scheme (5.3) is second order accurate in the time step.
Secondly, the proof highlights that the sign S in the scheme (5.3)
relates to sub-step properties of the noise.

Lemma 5.10. The Runge–Kutta like scheme (5.3) has errors O
(
h
)

when applied to the additive noise, linear sde dX = a(t)Xdt +
b(t)dW for functions a and b twice differentiable. Further, in the
exact differential case when ab = db/dt (a solution to the sde is
then X = b(t)W) the errors are O

(
h2
)
.

Proof. In this case, the first step in the scheme (5.3) predicts the
change

∆X = h1
2
(a0 + a1)X0 +

1
2
h2a0a1X0 +

1
2
(b0 + b1)∆W

+ 1
2
a1b0h(∆W − S

√
h) + 1

2
S
√
h∆b . (5.13)

Like before, a0 = a(0), a1 = a(h), b0 = b(0) and b1 = b(h).
We compare this approximate change over the time step h with the
true change using iterated integrals. For simplicity use subscripts to
denote dependence upon ‘times’ t, s and r:

∆X =

∫h
0

atXt dt+

∫h
0

bt dWt

substituting Xt = X0 + ∆X inside the integral gives

=

∫h
0

at

[
X0 +

∫t
0

asXs ds+

∫t
0

bs dWs

]
dt+

∫h
0

bt dWt

= X0

∫h
0

at dt+

∫h
0

at

∫t
0

asXs dsdt
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+

∫h
0

at

∫t
0

bs dWs dt+

∫h
0

bt dWt

substituting Xs = X0 + ∆X inside the integral gives

= X0

∫h
0

at dt+

∫h
0

at

∫t
0

as

[
X0 +

∫s
0

arXr dr+

∫s
0

br dWr

]
dsdt

+

∫h
0

at

∫t
0

bs dWs dt+

∫h
0

bt dWt

= X0

∫h
0

at dt+ X0

∫h
0

at

∫t
0

as dsdt+

∫h
0

at

∫t
0

as

∫s
0

arXr drdsdt

+

∫h
0

at

∫t
0

as

∫s
0

br dWr dsdt+

∫h
0

at

∫t
0

bs dWs dt+

∫h
0

bt dWt .

Replace the negligible triple integrals by their orders of magnitude
where, with perhaps some abuse of notation, I use Q

(
hp
)

to denote
random variables of mean zero and variance h2p.4 The previous
proof looked closely at the variances of error terms; here we simplify
by focussing only upon their order of magnitude. Then

∆X = X0

∫h
0

at dt+ X0

∫h
0

at

∫t
0

as dsdt+O
(
h3
)

+Q
(
h5/2

)
+

∫h
0

at

∫t
0

bs dWs dt+

∫h
0

bt dWt . (5.14)

Consider separately the integrals in (5.14). Terms of O
(
h3
)

or

of Q
(
h5/2

)
are errors and only tracked by their order of magnitude

in h.

• Firstly, X0
∫h
0
at dt = X0h

1
2
(a0 + a1) + O

(
h3
)

by the clas-
sic trapezoidal rule. This matches the first component in the
numerical (5.13).

4The reason to separately identify such random errors is that when summed
over O

(
1/h

)
independent time steps, the central limit theorem implies a lo-

cal error Q
(
hp

)
becomes a global error Q

(
hp−1/2

)
. In comparison, a local

error O
(
hp

)
, when summed, becomes a global error O

(
hp−1

)
.
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• Secondly, using the linear interpolation at = a0+
∆a
h
t+O

(
t2
)
,

where as usual ∆a = a1 − a0 , the repeated integral∫h
0

at

∫t
0

as dsdt =

∫h
0

(
a0 +

∆a

h
t
)(
a0t+

∆a

2h
t2
)
+O

(
t3
)
dt

=

∫h
0

a20t+ a0
3∆a

2h
t2 +O

(
t3
)
dt

= 1
2
a20h

2 + a0
∆a

2
h2 +O

(
h4
)

= 1
2
a0a1h

2 +O
(
h4
)

Multiplied by X0, this double integral matches the second term
in the numerical (5.13).

• Thirdly, from the proof of the previous lemma, equation (5.12)
gives∫h
0

bt dWt =
1
2
(b1 + b0)∆W +

∆b

h

∫h
0

(
t− h

2

)
dWt +Q

(
h5/2

)
.

(5.15)
The first term here matches the third term in the numeri-
cal (5.13). The second term on the right-hand side is an inte-
gral remainder that will be dealt with after the next item.

• Lastly, change the order of integration in the double integral∫h
0

at

∫t
0

bs dWs dt

=

∫h
0

bs

∫h
s

at dtdWs

=

∫h
0

bs

∫h
s

a1 +O
(
h− t

)
dtdWs

=

∫h
0

bsa1(h− s) +O
(
(h− s)2

)
dWs
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=

∫h
0

b0a1(h− t) +O
(
h2
)
dWt

=

∫h
0

b0a1(h− t)dWt +Q
(
h5/2

)
=

∫h
0

h
2
b0a1 + b0a1

(
h
2
− t
)
dWt +Q

(
h5/2

)
= 1
2
hb0a1∆W − b0a1

∫h
0

(
t− h

2

)
dWt +Q

(
h5/2

)
The first term here matches the first part of the fourth term in
the numerical (5.13). The second term on the right-hand side
is an integral remainder that will be dealt with next.

Hence we now identify that the difference between the Runge–Kutta
like step (5.13) and the change (5.14) in the true solution is the error

ε0 = − 1
2
a1b0h

3/2S+ 1
2
S
√
h∆b+ b0a1

∫h
0

(
t− h

2

)
dWt

−
∆b

h

∫h
0

(
t− h

2

)
dWt +O

(
h3
)
+Q

(
h5/2

)
=

[
1
2
Sh3/2 −

∫h
0

(
t− h

2

)
dWt

]{
−a1b0 +

∆b

h

}
+O

(
h3
)
+Q

(
h5/2

)
(5.16)

Two cases arise corresponding to the main and the provisional parts
of lemma 5.10.

• In the general case, the factor in brackets in (5.16) determines
the order of error. Choosing the signs S randomly with mean
zero, the leading error is then O

(
h3
)
+Q

(
h3/2

)
. This is the

local one step error. Summing over O
(
1/h

)
time steps gives

that the global error is O
(
h2
)
+Q

(
h
)
. That is, the error due

to the noise dominates and is generally first order in h as the
variance is of order h2.
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However, as the noise decreases to zero, b → 0, the order of
error transitions to the deterministic case of O

(
h2
)
.

• The second case is when the factor in braces in (5.16) is small:
this occurs for the integrable case ab = db/dt as then the
term in braces is O

(
h
)

so that the whole error (5.16) be-

comes O
(
h3
)
+Q

(
h5/2

)
. Again this is the local one step error.

Summing over O
(
1/h

)
time steps gives that the global error

is O
(
h2
)
+Q

(
h2
)
. That is, in this case the error is of second

order in time step h, both through the deterministic error and
the variance of the stochastic errors. Figure 5.5 shows another
case when the error is second order.

This concludes the proof.

Interestingly, we would decrease the size of the factor in brack-
ets in the error (5.16) by choosing the sign S to cancel as much as

possible the integral
∫h
0

(
t − h

2

)
dWt . This sub-step integral is one

characteristic of the sub-step structure of the noise, and is indepen-
dent of ∆W. If we knew this integral, then we could choose the
sign S to cause some error cancellation; however, generally we do
not know the sub-step integral. A converse view is that no matter
how we choose signs S, provided the mean is zero, there will be many
realisations of the noise, with fixed ∆W, for which some cancella-
tion of the term in brackets occurs. The error is smaller for these
realisations.

For example, if one used Brownian bridges to successively refine
the numerical approximations for smaller and smaller time steps,
then it may be preferable to construct a Brownian bridge compatible
with the signs S used on the immediately coarser step size.5

5The Brownian bridge stochastically interpolates a Wiener process to half-
steps in time if all one knows is the increment ∆W over a time step h. The
Brownian bridge asserts that the change over half the time step, h/2, is 1

2
∆W −

1
2

√
hZ for some Z ∼ N(0, 1); the change over the second half of the time step
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Theorem 5.11. The Runge–Kutta like scheme (5.3) generally has
errors O

(
h
)

when applied to the sde (5.1) for sufficiently smooth
drift and volatility functions a(t, x) and b(t, x).

Proof. Straightforward algebra and Taylor series in the smooth
coefficients a(t, x) and b(t, x) shows the first step in the scheme (5.3)
predicts the change

∆X = a0h+ b0∆W + 1
2
b0b

′
0(∆W

2 − S2h)

+ 1
2
(∆W − S

√
h)
[
hb0a

′
0 +

1
2
(∆W2 − S2h)b20b

′′
0

]
+ h(∆W + S

√
h)(ḃ0 + a0b

′
0) +O

(
h2
)
, (5.17)

using here an overdot to denote ∂/∂t and dashes to denote ∂/∂x.
Provided the signs S satisfy S2 = 1 + O

(
h
)
+ Q

(√
h
)

the first line
of (5.17) matches the leading order parts of the solution of the sde:
easiest is to choose S = ±1 as specified earlier. The remaining
identified terms in (5.17) are errors Q

(
h3/2

)
provided the signs S

have mean O
(√
h
)
: we normally assume a zero mean for simplicity.

• I suggest choosing signs S = ±1 randomly, mean zero, inde-
pendent of ∆W (then the sample signs over a global interval
would effectively have a local ‘sample’ mean Q

(√
h
)
).

Limited numerical experiments suggests errors reduce with
S = sign(∆W). Such dependence upon ∆W appears acceptable
provided E(S∆W2) = 0 .

• You could choose signs S = ±1 alternately from one time step
to the next: then the error term in (5.17) effectively becomes
finite differences in time of the coefficients that it multiplies,
such a difference operator is effectively O

(√
h
)

when acting

is correspondingly 1
2
∆W + 1

2

√
hZ . Factoring out the half, these sub-steps are

1
2
(∆W ∓ Z

√
h) which match the factors (∆W ∓ S

√
h) used by the scheme (5.3):

the discrete signs S = ∓ have mean zero and variance one just like the normally
distributed Z of the Brownian bridge.
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on the worst ∆W2 term and so effectively incur an acceptable
local error.

• But choosing signs S uniformly is not acceptable as then there
would be deterministic local errors O

(
h3/2

)
that would accu-

mulate to a global error O
(√
h
)
.

Many introductions to the numerical solutions of sdes give the
following analysis [2, e.g.]. The following analysis gives a stochastic
Taylor series solution to the sde (5.1) to compare with the numerical
prediction (5.17). The stochastic Taylor series analysis starts from
the Ito formula: for a stochastic process X(t) satisfyng the sde (5.1),
any function of the process

f(t, Xt) = f(0, X0) +

∫t
0

L0sf(s, Xs)ds+

∫t
0

L1sf(s, Xs)dWs ,

where L0s =

[
∂

∂t
+ a

∂

∂x
+ 1
2
b2
∂2

∂x2

]
t=s

, L1s =

[
b
∂

∂x

]
t=s

.

For conciseness we again use subscripts t, s and r to denote evalu-
ation at these times, and ft = f(t, Xt) as appropriate. Now turn to
the sde (5.1) itself: it represents an integral change over the first
time step of

∆X =

∫h
0

a(t, Xt)dt+

∫h
0

b(t, Xt)dWt

apply the Ito formula to a(t, Xt) and b(t, Xt)

=

∫h
0

a0 +

∫t
0

L0sas ds+

∫t
0

L1sas dWs dt

+

∫h
0

b0 +

∫t
0

L0sbs ds+

∫t
0

L1sbs dWs dWt

apply the Ito formula to L1sbs

=

∫h
0

a0 dt+

∫h
0

∫t
0

L0sas dsdt+

∫h
0

∫t
0

L1sas dWs dt
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+

∫h
0

b0 dWt +

∫h
0

∫t
0

L0sbs dsdWt

+

∫h
0

∫t
0

L10b0 +

∫s
0

L0rL
1
rbr dr+

∫s
0

L1rL
1
rbr dWr dWs dWt

rearrange in order of magnitude

= a0

∫h
0

dt+ b0

∫h
0

dWt + L
1
0b0

∫h
0

∫t
0

dWs dWt

+

[∫h
0

∫t
0

L1sas dWs dt+

∫h
0

∫t
0

L0sbs dsdWt

+

∫h
0

∫t
0

∫s
0

L1rL
1
rbr dWr dWs dWt

]

+

[∫h
0

∫t
0

L0sas dsdt+

∫h
0

∫t
0

∫s
0

L0rL
1
rbr drdWs dWt

]
either evaluate or replace by order in h

= a0h+ b0∆W + b ′
0b0

1
2
(∆W2 − h) +Q

(
h3/2

)
+O

(
h2
)

Provided signs S are chosen as described before, this expression for
the change ∆X matches (5.17) for the numerical scheme. The differ-
ences are Q

(
h3/2

)
+O

(
h2
)
. This is the local error. Upon summing

over O
(
1/h

)
time steps we then deduce the global error is O

(
h
)

for
the scheme (5.3).

Corollary 5.12 (Stratonovich SDEs). The Runge–Kutta like
scheme (5.3), but setting S = 0 , has errors O

(
h
)

when the sde (5.2)
is to be interpreted in the Stratonovich sense.

Proof. Interpreting the sde (5.2) in the Stratonovich sense implies
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solutions are the same as the solutions of the Ito sde

dX = (a+ 1
2
bb ′)dt+ bdW .

Apply the scheme (5.3) (with S = 1 as appropriate to an Ito sde),
or the analysis of the previous proof, to this Ito sde. Then, for
example, the one step change (5.17) becomes

∆X = (a0+
1
2
b0b

′
0)h+b0∆W+ 1

2
b0b

′
0(∆W

2−h)+Q
(
h3/2

)
+O

(
h2
)
.

The component of the deterministic drift term that involves b0b
′
0

cancel leaving, in terms of the coefficient functions of the Stratonovich
sde,

∆X = a0h+ b0∆W + 1
2
b0b

′
0∆W

2 +Q
(
h3/2

)
+O

(
h2
)
. (5.18)

Now apply the scheme (5.3) with S = 0 to the Stratonovich sde:
Taylor series expansions obtain the one step numerical prediction
as (5.17) upon setting S = 0 . This one step numerical prediction is
the same as (5.18) to the same order of errors. Thus the scheme (5.3)
with S = 0 solves the Stratonovich interpretation of the sde (5.2).
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