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Discussion

Katzenberger (1991) argued a geometric basis to modelling the slow dynamics
in a slow-fast stochastic differential equation. It is great that this argument
accounts for nonlinear noise-noise interactions, and the drift effects they
cause. This modelling is Markovian.
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In contrast, stochastic slow manifold theory developing from Boxler (1989)
leads to a proof that non-Markovian effects are generally required (Chao
and Roberts 1996; Roberts 2008). However, some additional weak solution
analysis may justify a Markovian model (Chao and Roberts 1996; Roberts
2006), albeit only emergent from algebraic decay of transients.

Sections 1 to 3 explore three simple sde systems to understand the rela-
tion between the modelling of Katzenberger (1991) and that of systematic
stochastic slow manifolds (Roberts 2008; Roberts 2009–2022).

Section 4 codes the procedure of Parsons and Rogers (2015) and Parsons
and Rogers (2017), in the computer algebra package Reduce (Hearn and
Schöpf 2018), to evaluate the sde modelling of Katzenberger (1991). Choose
a system to analyse with the following parameter, in {1, 2, 3}:

1 sys:=3;

Comparison and questions

• Katzenberger (1991) analysis is based upon heuristic arguments about
the geometry near a deterministic critical manifold. The stochastic
slow manifolds (ssm) are based upon exact algebra of the system for
all states in a finite domain, to a chosen error (e.g., Roberts 2008).

• Katzenberger (1991) models are Markovian, whereas ssm theory proves
that non-Markovian effects generally occur—as seen in all three ex-
amples. The missed non-Markovian effects are the same order of
magnitude as the drift resolved by Katzenberger (1991).

• Katzenberger (1991) assumes one can choose a deterministically defined
slow variable. Whereas I prove that in general, to avoid non-Markovian
linear effects, that the true slow variable is stochastically related to
state space variables (e.g., Roberts 2008).

• The drifts predicted by the two approaches agree in the first two
examples, but quantitatively disagree in the third example. Since the
ssm result is based upon exact algebra, either Katzenberger (1991) is
wrong, or Parsons and Rogers (2015) and Parsons and Rogers (2017)
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wrongly expresses his results, or my code wrongly implements their
expressions. Which? What happens in the example of Section 3?

• But even when the drifts agree, the ssm proves that the drifts only
emerge from transients that decay algebraically in time, whereas Katzen-
berger (1991) gives no hint of such required long time spans.

• Questions about Parsons and Rogers (2015) and Parsons and Rogers
(2017): is (18) really the required pseudo-inverse? and (19) has multiple
solutions, so what is “the” solution?

• Equations (22) and (23) in Parsons and Rogers (2017) look wrong
to me: for example, J =

[
0 0
0 −1

]
then (22) gives the pseudo-inverse

is J+ := 1
λJ = −J = [ 0 0

0 1 ], whereas (18) gives J+ := +J =
[
0 0
0 −1

]
.

Instead, do they really mean J+ := 1
λ2
J?

And from the given (22), (23) should surely be P = I − 1
λJ

2?

1 Irreducible noise more-or-less matches

This first system (sys = 1) is (nearly) the canonical irreducible system
identified by Chao and Roberts (1996)—irreducible because its stochastic
slow manifold is the same algebraic form as the system itself! In Ito form
(and with

√
µ = σ) the system is

#1 Ito, dx1 = σx2dW, dx2 = −x2dt+ σdW. (1.1)

In the Stratonovich form, with white noise η = dW/dt, this is

#1 Strat, ẋ1 = −1
2σ

2 + σx2η , ẋ2 = −x2 + ση . (1.2)

For this and the other two examples, the x1-axis, x2 = 0, is the deterministic
(σ = 0) critical manifold. Deterministically the isochrons, the stable foliation,
are just parallel lines x1 = constant.

The code of Section 4 here generates the output of Section 4.1. It asserts
that for z = x1 the slow model is simply

ż = 0, (1.3)
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that is, nothing at all.

For comparison, my web service (Roberts 2009–2022) constructs the coordi-
nate transform to XY -variables, where y1 = x2 and w1 = η,

x1 = X1 − σet?w1 Y1 +O
(
σ2
)

y1 = Y1 + σe−1t?w1 +O
(
σ2
)

(1.4)

And in these new variables the (Stratonovich) state space evolution is (the
parameter ε in my analysis (Roberts 2009–2022) is a robust ordering param-
eter to more-or-less ensure convergence to a valid model—usually set my
ε = 1)

Ẋ1 = −1/2σ2ε+ σ2e−1t?w1w1 +O
(
σ3
)

Ẏ1 = −Y1 +O
(
σ3
)

(1.5)

In the new XY -coordinate system: Y1 → 0 exponentially quickly; leaving X1

to be the true slow variable for all time; as throughout X1 evolves as above
via the multiplicative noise-noise interactions—the system itself is linear in
dynamical variables.

The slow X1 evolution is non-Markovian through the dependence upon
past history of the noise, but also the coordinate transform and hence the
interpretation of X1 is non-Markovian in its generic dependence upon the
near-future of the noise via the term σet?w1 Y1, albeit zero on the stochastic
slow manifold.

Chao and Roberts (1996) and Roberts (2006) argued that one could weakly
model the X1 evolution via analysis of its Fokker–Planck pde. The result is
that on long times, with errors decaying algebraically in time, one may be
justified in using the weak model Ẋ1 = σ2 12η

′ for some new white noise η′.
The zero drift agrees with (1.3) of Katzenberger (1991), but (1.3) misses the
‘small’ fluctuations, and misses the long-time required for justification.
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2 Parabolic isochrons more-or-less matches

This second system (sys = 2) has a drift simply generated by excursions off
the deterministic slow manifold. In Ito form the system is

#2 Ito, dx1 = x22dt , dx2 = −x2dt+ σdW. (2.1)

In the Stratonovich form, with white noise η = dW/dt, this is

#2 Strat, ẋ1 = x22 , ẋ2 = −x2 + ση . (2.2)

Deterministically the isochrons are parabolas x1 = c− 1
2x

2
2 for each c.

The code of Section 4 here generates the output of Section 4.2. It asserts
that for z = x1 the slow model is simply

ż = 1
2σ

2, (2.3)

that is, a slow drift without any fluctuations.

For comparison, my web service (Roberts 2009–2022) constructs the coordi-
nate transform to XY -variables, where y1 = x2 and w1 = η,

x1 = X1 + σε
(
− et?w1 Y1 − e−1t?w1 Y1

)
− 1/2εY 2

1 +O
(
σ2
)

y1 = Y1 + σe−1t?w1 +O
(
σ2
)

(2.4)

And in these new variables the (Stratonovich) state space evolution is

Ẋ1 = σ2εe−1t?w1w1 +O
(
σ3
)

Ẏ1 = −Y1 +O
(
σ3
)

(2.5)

In the new XY -coordinate system: Y1 → 0 exponentially quickly; and
throughout X1 evolves as above via the nonlinear noise-noise interactions.

Chao and Roberts (1996) and Roberts (2006) showed that one could weakly
model the X1 evolution via analysis of its Fokker–Planck pde. The result
is that on long times, with errors decaying algebraically in time, one may
be justified in using the weak model Ẋ1 = σ2(12 + 1

2η
′) for some new white

noise η′. The drift agrees with (2.3) of Katzenberger (1991), but (2.3) misses
the ‘small’ fluctuations, and misses the long-time required for justification.
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3 Variously sloping isochrons appear problematic

This third system (sys = 3) has a drift generated by excursions off the
deterministic slow manifold, but now due to variously sloping isochrons. In
Ito form the system is

#3 Ito, dx1 = x1x2 dt , dx2 = −x2dt+ σdW. (3.1)

In the Stratonovich form, with white noise η = dW/dt, this is

#3 Strat, ẋ1 = x1x2 , ẋ2 = −x2 + ση . (3.2)

Deterministically the isochrons are the curves x1 = ce−x2 for each c: these
not only curve but also have varying slant.

The code of Section 4 here generates the output of Section 4.3. It asserts
that for z = x1 the slow model is

ż = 1
2σ

2(2 + u1 + u2z)z + σzη, (3.3)

in terms of two undetermined constants ui arising in the non-unique solutions
for matrices X1 :=

[
(u1−1)/z u1

u1 u1z

]
and X2 :=

[
u2/z u2
u2 u2z

]
. I presume the desired

unique solution is the non-simgular one without any division by variable z,
in which case u1 := 1 and u2 := 0 leading to

ż = 3
2σ

2z + σzη, (3.4)

that is, an exponentially unstable drift with multiplicative fluctuations. (Do
the fluctuations stabilise the drift?)

For comparison, my web service (Roberts 2009–2022) constructs the coordi-
nate transform to XY -variables, where y1 = x2 and w1 = η,

x1 = X1 − εX1Y1 − σεe−1t?w1X1 + 1/2ε2X1Y
2
1 + σε2e−1t?w1X1Y1

− 1/6ε3X1Y
3
1 − 1/2σε3e−1t?w1X1Y

2
1 +O

(
ε4, σ2

)
y1 = Y1 + σe−1t?w1 +O

(
ε4, σ2

)
(3.5)
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4 Katzenberger modelling 7

And in these new variables the (Stratonovich) state space evolution is

Ẋ1 = σεw1X1 +O
(
ε5, σ3

)
Ẏ1 = −Y1 +O

(
ε5, σ3

)
(3.6)

In the new XY -coordinate system: Y1 → 0 exponentially quickly; and
throughout X1 evolves as above via the nonlinear noise-noise interactions.
Here the noise is multiplicative so we need to consider the Ito form in order
to compare to (3.4) of Katzenberger (1991): applying the transform rule
(e.g., Roberts 2015, Thm. 20.9) gives

dX1 = +1
2σ

2X1 dt+ σεX1 dW +O
(
σ3
)

(3.7)

The drift differs from that of (3.4) which is apparently the prediction of
Katzenberger (1991). (These can only be brought into line by choosing

u1 = −1 to give the weird result that X1 :=
[
−2/z −1
−1 −z

]
.)

Question: is there a mistake in my coding? in the interpretation of Xi?
in Parsons and Rogers (2015) and Parsons and Rogers (2017)? or in
Katzenberger (1991)?

4 Katzenberger modelling

Dynamical variables are x(i), and white noises eta(i). For the systems,
set the Ito interpretation which Parsons and Rogers (2015) and Parsons and
Rogers (2017) address in their sde form

\̇xv
~x =

\fv~f(
\xv
~x) + ε

\hv~h(
\xv
~x) + σG(

\xv
~x)~η(t). (4.1)

2 operator x,eta;

3 f :=tp mat(( (if sys=2 then x(2)^2 else 0)

4 +(if sys=3 then x(1)*x(2) else 0)

5 , -x(2) ));

6 gg:=tp mat(( (if sys=1 then x(2) else 0) , 1 ));

7 h :=tp mat(( 0,0 ));

8 etav:=tp mat((eta(1)));
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4 Katzenberger modelling 8

By design, the systems have critical manifold x2 = 0 so define man for when
we substitute this, parameterised by z.

9 man:={x(1)=>z,x(2)=>0};

Mostly, the following is general Get the dimensionality of the system,
and define corresponding zero and identity matrices.

10 n:=part(length(f),1);

11 matrix Zero(n,n);

12 Id:=Zero$ for i:=1:n do Id(i,i):=1;

Form Jacobian of f , evaluated on the critical manifold, and its transpose.

13 tmp:=Zero$

14 for i:=1:n do for j:=1:n do tmp(i,j):=df(f(i,1),x(j));

15 Jac:=sub(man,tmp);

16 JacT:=tp Jac;

Since here eigenvalues of J are only 0 and −1, then “the pseudo-inverse”
according to equation (18) of Parsons and Rogers (2015) and Parsons and
Rogers (2017) is simply J itself:

17 JacPI:=Jac;

But (18) is only one possible pseudo-inverse because, for example, the
definition of the Moore–Penrose pseudo-inverse uses the svd ((18) and the
Moore–Penrose are the same only for symmetric matrices). Perhaps some
pseudo-inverse proportional to JT would be better?

Useful proc to access a given element in an array of matrices

18 procedure el(a,i,j)$ a(i,j)$

Via the equation following (18) of Parsons and Rogers (2015) and Parsons
and Rogers (2017), compute the Hessians evaluated on the critical manifold.
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4 Katzenberger modelling 9

19 array Hes(n);

20 for i:=1:n do begin

21 tmp:=Zero;

22 for j:=1:n do for k:=1:n do

23 tmp(j,k):=df(f(i,1),x(j),x(k));

24 write Hes(i):=sub(man,tmp);

25 end;

Solve the Lyapunov equation (19) of Parsons and Rogers (2015) and Parsons
and Rogers (2017)—but there are multiple solutions (I do not see that Parsons
and Rogers (2015) and Parsons and Rogers (2017) identify what to do with
the multiple solutions). For the moment parametrise them all with u#.

26 array xx(n);

27 operator u;

28 us:= for i:=1:n join for j:=1:n collect u(i,j)$

29 for l:=1:n do begin

30 tmp:=Zero$

31 for i:=1:n do for j:=1:n do tmp(i,j):=u(i,j);

32 res19:=JacT*tmp+tmp*Jac+Hes(l);

33 eqns:= for i:=1:n join for j:=1:n collect res19(i,j);

34 soln:=( solve(eqns,us) where arbcomplex(~i)=>mkid(u,i) );

35 write xx(l):=sub(soln,tmp);

36 end;

Check the general solution is OK.

37 for i:=1:n do if JacT*xx(i)+xx(i)*Jac+Hes(i) neq Zero

38 then rederr("**** Failure in solving a Lyapunov system");

Compute the projection matrix P = pp via equation (20) of Parsons and
Rogers (2015) and Parsons and Rogers (2017):

39 pp:=Id-JacPI*Jac;

Then compute Q = qq via equation (21) of Parsons and Rogers (2015)
and Parsons and Rogers (2017), first overwriting xx to store complicated
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4 Katzenberger modelling 10

sub-expressions.

40 array qq(n),php(n);

41 for l:=1:n do begin

42 php(l):=(tp pp)*Hes(l)*pp;

43 xx(l):=xx(l)-(tp JacPI)*Hes(l)*pp-(tp pp)*Hes(l)*JacPI;

44 end;

Second, evaluate equation (21) to get matrix Qi.

45 for i:=1:n do begin

46 tmp:=Zero;

47 for j:=1:n do for k:=1:n do

48 tmp(j,k):=for l:=1:n sum

49 -JacPI(i,l)*el(php(l),j,k)+pp(i,l)*el(xx(l),j,k);

50 write qq(i):=tmp;

51 end;

Plug into formula (8) of Parsons and Rogers (2015) [p.8], equivalently into (7)
of Parsons and Rogers (2017).

52 array gqg(n);

53 factor sigma,epsilon;

54 tmp:=0*f$

55 for i:=1:n do begin

56 write gqg(i):=(tp gg)*qq(i)*gg;

57 tmp(i,1):=trace(gqg(i));

58 end;

59 dzdtdrift:=sub(man, epsilon*pp*h+sigma^2/2*tmp );

60 dzdtnoise:=sub(man, sigma*pp*gg*etav );

Finish the reduce script.

61 end;%script
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4.1 Algebra for system (1.1)

1 1: in_tex "katzComparison.tex"$

2 sys := 1

3

4 [ 0 ]

5 f := [ ]

6 [ - x(2)]

7

8 [x(2)]

9 gg := [ ]

10 [ 1 ]

11

12 [0]

13 h := [ ]

14 [0]

15

16 etav := [eta(1)]

17

18 man := {x(1) => z,x(2) => 0}

19 n := 2

20

21 [0 0 ]

22 jac := [ ]

23 [0 -1]

24

25 [0 0 ]

26 jact := [ ]

27 [0 -1]

28

29 [0 0 ]

30 jacpi := [ ]

31 [0 -1]

32

33 [0 0]
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34 hes(1) := [ ]

35 [0 0]

36

37 [0 0]

38 hes(2) := [ ]

39 [0 0]

40

41 [u1 0]

42 xx(1) := [ ]

43 [0 0]

44

45 [u2 0]

46 xx(2) := [ ]

47 [0 0]

48

49 [1 0]

50 pp := [ ]

51 [0 0]

52

53 [u1 0]

54 qq(1) := [ ]

55 [0 0]

56

57 [0 0]

58 qq(2) := [ ]

59 [0 0]

60

61 [ 2 ]

62 gqg(1) := [x(2) *u1]

63

64 gqg(2) := [0]

65

66 [0]

67 dzdtdrift := [ ]

68 [0]
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69

70 [0]

71 dzdtnoise := [ ]

72 [0]

4.2 Algebra for system (2.1)

1 1: in_tex "katzComparison.tex"$

2 sys := 2

3

4 [ 2 ]

5 [ x(2) ]

6 f := [ ]

7 [ - x(2)]

8

9 [0]

10 gg := [ ]

11 [1]

12

13 [0]

14 h := [ ]

15 [0]

16

17 etav := [eta(1)]

18

19 man := {x(1) => z,x(2) => 0}

20 n := 2

21

22 [0 0 ]

23 jac := [ ]

24 [0 -1]

25

26 [0 0 ]

27 jact := [ ]

28 [0 -1]
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29

30 [0 0 ]

31 jacpi := [ ]

32 [0 -1]

33

34 [0 0]

35 hes(1) := [ ]

36 [0 2]

37

38 [0 0]

39 hes(2) := [ ]

40 [0 0]

41

42 [u1 0]

43 xx(1) := [ ]

44 [0 1]

45

46 [u2 0]

47 xx(2) := [ ]

48 [0 0]

49

50 [1 0]

51 pp := [ ]

52 [0 0]

53

54 [u1 0]

55 qq(1) := [ ]

56 [0 1]

57

58 [0 0]

59 qq(2) := [ ]

60 [0 0]

61

62 gqg(1) := [1]

63
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64 gqg(2) := [0]

65

66 [ 2 ]

67 [ sigma ]

68 [--------]

69 dzdtdrift := [ 2 ]

70 [ ]

71 [ 0 ]

72

73 [0]

74 dzdtnoise := [ ]

75 [0]

4.3 Algebra for system (3.1)

1 1: in_tex "katzComparison.tex"$

2 sys := 3

3

4 [x(2)*x(1)]

5 f := [ ]

6 [ - x(2) ]

7

8 [0]

9 gg := [ ]

10 [1]

11

12 [0]

13 h := [ ]

14 [0]

15

16 etav := [eta(1)]

17

18 man := {x(1) => z,x(2) => 0}

19 n := 2

20
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21 [0 z ]

22 jac := [ ]

23 [0 -1]

24

25 [0 0 ]

26 jact := [ ]

27 [z -1]

28

29 [0 z ]

30 jacpi := [ ]

31 [0 -1]

32

33 [0 1]

34 hes(1) := [ ]

35 [1 0]

36

37 [0 0]

38 hes(2) := [ ]

39 [0 0]

40

41 [ u1 - 1 ]

42 [-------- u1 ]

43 xx(1) := [ z ]

44 [ ]

45 [ u1 u1*z]

46

47 [ u2 ]

48 [---- u2 ]

49 xx(2) := [ z ]

50 [ ]

51 [ u2 u2*z]

52

53 [1 z]

54 pp := [ ]

55 [0 0]
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56

57 [ u1 + u2*z - 1 ]

58 [--------------- u1 + u2*z + 1 ]

59 qq(1) := [ z ]

60 [ ]

61 [ u1 + u2*z + 1 z*(u1 + u2*z + 2)]

62

63 [0 0]

64 qq(2) := [ ]

65 [0 0]

66

67 gqg(1) := [z*(u1 + u2*z + 2)]

68

69 gqg(2) := [0]

70

71 [ 2 ]

72 [ sigma *z*(u1 + u2*z + 2) ]

73 [--------------------------]

74 dzdtdrift := [ 2 ]

75 [ ]

76 [ 0 ]

77

78 [sigma*eta(1)*z]

79 dzdtnoise := [ ]

80 [ 0 ]
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