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Instructions

• Download and install the computer algebra package Reduce1

via http://www.reduce-algebra.com

• Navigate to folder Examples within folder StoNormForm.

• For each example of interest, start-up Reduce and enter the
command in_tex "filename.tex"$ where filename is the
root name of the example (as listed in the following table of
contents).

The results involve convolutions over the non-autonomous/stochastic
factors (Roberts 2008, 2015b, (12) and §19.2, respectively):

eµt⋆v :=

{∫ t
−∞ eµ(t−τ) v(τ) dτ ℜµ < 0 ,∫∞
t eµ(t−τ) v(τ) dτ ℜµ > 0 ,

which has the crucial differential property that

d

dt
eµt⋆v = µ(eµt⋆v )− (sgnℜµ)v .
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1 ratodes: Simple rational ODEs

A simple system of fast/slow odes in rational functions is

ẋ = − xy

1 + z
, ẏ = − y

1 + 2y
+ x2, ż = 2

z

1 + 3x
. (1)

Use x1 to denote variable x, y1 to denote variable y, and z1 to de-
note z, except within df(,t) one must use (1)-form. Multiply each
ode by the denominator for the ode and shift the nonlinear d/dt
terms to the right-hand side.

Start by loading the procedure.

1 in_tex "../stoNormForm.tex"$

Execute the construction of a normal form for this system.
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1 ratodes: Simple rational ODEs 3

2 stonormalform(

3 {-x1*y1-z1*df(x(1),t)},

4 {-y1+x1^2*(1+2*y1)-2*y1*df(y(1),t)},

5 {2*z1-3*x1*df(z(1),t)},

6 4 )$

7 end;

The procedure embeds the system as the ε = 1 version of the family

ẋ1 = ε
(
− dx1

d t
z1 − x1y1

)
ẏ1 = ε

(
− 2

d y1
d t

y1 + 2x21y1 + x21
)
− y1

ż1 = −3ε
d z1
d t

x1 + 2z1

Time dependent coordinate transform

z1 = 6ε2X1Y1Z1 + Z1

y1 = ε2
(
2X4

1 − 4X2
1Y

2
1 + 6Y 3

1

)
+ ε

(
X2

1 − 2Y 2
1

)
+ Y1

x1 = ε2
(
2X3

1Y1 − 1/2X1Y
2
1 +X1Y1Z1

)
+ εX1Y1 +X1

Result normal form DEs

Ż1 = −54ε3X3
1Z1 + 18ε2X2

1Z1 − 6εX1Z1 + 2Z1

Ẏ1 = 8ε3X4
1Y1 + 4ε2X2

1Y1 + 2εX2
1Y1 − Y1

Ẋ1 = ε3
(
− 2X5

1 − 2X1Y
2
1 Z1

)
− ε2X3

1

Various invariant manifolds of interest The procedure will
instead directly construct a specific invariant manifold by specifying
the optional fifth argument, as in

8 stonormalform(

9 {-x1*y1-z1*df(x(1),t)},

10 {-y1+x1^2*(1+2*y1)-2*y1*df(y(1),t)},

11 {2*z1-3*x1*df(z(1),t)},

12 4,

13 theman )$

where theman is one of the following six identifiers:

• cman, for a centre manifold, here a slow manifold and equiva-
lent to Y1 = Z1 = 0 in the above;

• sman, for a stable manifold, equivalent to X1 = Z1 = 0 in the
above;

• uman, for a unstable manifold, equivalent to Y1 = X1 = 0 in
the above;

• csman, for a centre-stable manifold, here a slow-stable mani-
fold and equivalent to Z1 = 0 in the above;
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2 futureNoise: Future noise in the transform 4

• cuman, for a centre-unstable manifold, here a slow-unstable
manifold and equivalent to Y1 = 0 in the above;

• csuman, for the above normal form reparametrisation of the
state space.

2 futureNoise: Future noise in the transform

An interesting pair of fast/slow sdes derived from stochastic advec-
tion/dispersion is

ẋ = −σyw(t) and ẏ = −y + σxw(t) , (2)

where lowercase w(t) denotes the formal derivative dW/dt of a
Stratonovich Wiener process W (t, ω). Parameter σ controls the
strength of the noise. In stochastic advection/dispersion parame-
ter σ represents the lateral wavenumber of the concentration profile.

Start by loading the procedure.

14 in_tex "../stoNormForm.tex"$

Execute the construction of a normal form for this system.

15 stonormalform(

16 {-y(1)*w(1)},

17 {-y(1)+x(1)*w(1)},

18 {},

19 5 )$

20 end;

Being linear in x, y the nonlinear parameter ε does not appear in
the analysis and results. Consequently, the procedure analyses the
system as prescribed (since given w changed to σw). The interest
in this example is the noise and the noise-noise interactions. As
usual, the noise-noise interactions are truncated to errors O

(
σ3

)
.

Time dependent coordinate transform

y1 = σe−1t⋆w1X1 + Y1

x1 = σet⋆w1 Y1 +X1

Result normal form DEs

Ẏ1 = σ2et⋆w1w1Y1 − Y1

Ẋ1 = −σ2e−1t⋆w1w1X1

The interesting aspect of this example is the explicit presence of
non-Markovian, future time integrals, anticipation integrals, in
the convolutions et⋆w1 . These appear in both the coordinate
transform, and the evolution off the stochastic slow manifold. But,
as guaranteed by theory, they do not appear on the stochastic
slow manifold.
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3 othersFail: Other methodologies fail 5

Further, this example could go to higher order noise-noise interac-
tions very quickly, that is, to higher orders in σ. However, I do not
compute such higher order terms in this code.

3 othersFail: Other methodologies fail

Consider, for small bifurcation parameter ϵ, the system

slow mode ẋ = ϵx+ x3 − xy + σxyw ,

fast mode ẏ = −y + x2 + y2 + σyw .

Deterministically, there is a bifurcation to two equilibria for small
ϵ > 0 . The noise w affects this bifurcation somehow.

Why is this tricky? Cross-sectional averaging is simply projection
onto the slow space y = 0 which predicts instability of subcritical
bifurcation ẋ = ϵx+x3 . Whereas adiabatic approximation, singular
perturbation, and multiple scales set ẏ = 0 whence y ≈ x2 and
thus predict only the linear growth of ẋ = ϵx . Our normal form
transforms get the deterministic dynamics correctly. But what
happens for stochastic dynamics?

Start by loading the procedure.

21 in_tex "../stoNormForm.tex"$

Execute the construction of a normal form for this system. Multiply
a cubic terms in the x sde in order to count orders of approximation
best (since the right-hand side is multiplied by small). Multiply the
bifurcation parameter by small in order to make it scale with ε2.

22 stonormalform(

23 {small*epsilon*x(1)+small*x(1)^3

24 -x(1)*y(1)*(1-small*w(1))},

25 {-y(1)+x(1)^2+y(1)^2+y(1)*w(1)},

26 {},

27 5)$

28 %end;% optionally finish code here

With the above artifices, the procedure analyses the following system
which reduce to the given one for ε = 1 :

ẋ1 = σεw1x1y1 + ε2
(
x31 + x1ϵ

)
− εx1y1

ẏ1 = σw1y1 + ε
(
x21 + y21

)
− y1

Time dependent coordinate transform This transform is
quite complicated, due to the noise, and involve fast-time future
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3 othersFail: Other methodologies fail 6

and history integrals. The deterministic terms at the end.

y1 = σε3
(
− 4et⋆et⋆w1 X2

1Y
2
1 + 4e−1t⋆e−1t⋆w1 X4

1 −
2e−1t⋆e−1t⋆w1 X2

1 ϵ+ 2e2t⋆w1X
2
1Y

2
1 − 10et⋆w1X

2
1Y

2
1 −

3et⋆w1 Y
4
1 + e−1t⋆w1X

4
1 + 3e−1t⋆w1X

2
1Y

2
1 −

2e−1t⋆w1X
2
1 ϵ
)
+ σε2

(
2et⋆w1 Y

3
1 − 2e−1t⋆w1X

2
1Y1

)
+ σε

(
−

et⋆w1 Y
2
1 + e−1t⋆w1X

2
1

)
+ ε3

(
X4

1 − 7X2
1Y

2
1 − 2X2

1 ϵ− Y 4
1

)
+

ε2Y 3
1 + ε

(
X2

1 − Y 2
1

)
+ Y1

x1 = σε3
(
− e3t⋆w1X1Y

3
1 + e2t⋆w1X1Y

3
1 + 3et⋆w1X

3
1Y1

)
+

σε2
(
e2t⋆w1X1Y

2
1 − et⋆w1X1Y

2
1 + e−1t⋆w1X

3
1

)
+ 2ε3X3

1Y1 +
εX1Y1 +X1

Result normal form DEs

Ẏ1 = σ2ε4
(
8e−1t⋆e−1t⋆w1 w1X

4
1Y1 − 4e−1t⋆e−1t⋆w1 w1X

2
1Y1ϵ+

6et⋆w1w1X
4
1Y1+22e−1t⋆w1w1X

4
1Y1− 4e−1t⋆w1w1X

2
1Y1ϵ

)
+

2σ2ε2e−1t⋆w1w1X
2
1Y1 + σε4

(
22w1X

4
1Y1 − 4w1X

2
1Y1ϵ

)
+

2σε2w1X
2
1Y1+σw1Y1+ε4

(
6X4

1Y1−4X2
1Y1ϵ

)
+4ε2X2

1Y1−Y1

Ẋ1 = −3σ2ε4e−1t⋆w1w1X
5
1−2σε4w1X

5
1+ε4

(
−X5

1+2X3
1 ϵ
)
+ε2X1ϵ

• As expected, Y1 = 0 is the stochastic slow manifold, and
is exponentially attractive (almost always) in some domain
about the origin.

• The slow X1 evolution is independent of Y1. Deterministically
(σ = 0), we predict a bifurcation to X1 ≈ ±ϵ1/4. The noise
appears to modify this slightly.

• The time-dependent coordinate transform maps these predic-
tions back into the xy-plane.

3.1 Focus on the slow manifold

To directly construct the non-autonomous/stochastic slow centre
manifold, just add the extra fifth parameter cman when invoking
the function.

29 stonormalform(

30 {small*epsilon*x(1)+small*x(1)^3

31 -x(1)*y(1)*(1-small*w(1))},

32 {-y(1)+x(1)^2+y(1)^2+y(1)*w(1)},

33 {},

34 5,cman)$

35 end;

Time dependent centre manifold coordinates This parametri-
sation is just the Y1 = 0 version of the full coordinate transform,
but derived much more quickly.

y1 = σε3
(
4e−1t⋆e−1t⋆w1 X4

1 −2e−1t⋆e−1t⋆w1 X2
1 ϵ+e−1t⋆w1X

4
1 −

2e−1t⋆w1X
2
1 ϵ
)
+ σεe−1t⋆w1X

2
1 + ε3

(
X4

1 − 2X2
1 ϵ
)
+ εX2

1

x1 = σε2e−1t⋆w1X
3
1 +X1
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4 offdiagonal: Levy area contraction: off-diagonal example 7

Result centre manifold DEs On the slow manifold the evolu-
tion is as in the full construction.

Ẋ1 = −3σ2ε4e−1t⋆w1w1X
5
1−2σε4w1X

5
1+ε4

(
−X5

1+2X3
1 ϵ
)
+ε2X1ϵ

4 offdiagonal: Levy area contraction: off-diagonal example

Pavliotis & Stuart (2008) assert the following system of five coupled
sdes are interesting for various parameters a and for small ϵ.

dx1 = ϵy1 dt ,

dx2 = ϵy2 dt ,

dx3 = ϵ(x1y2 − x2y1)dt ,

dy1 = (−y1 − ay2)dt+ dW1 ,

dy2 = (+ay1 − y2)dt+ dW2 .

This stochastic system has two noise sources. We treat Wi(t, ω)
as Stratonovich Wiener processes. Use x(i) to denote variable xi,
y(i) to denote variable yi, and w(i) to denote noise dWi/dt.

Start by loading the procedure.

36 in_tex "../stoNormForm.tex"$

It is convenient to factor written results on the two given parame-
ters ϵ, a:

37 factor epsilon,a;

Execute the construction of a normal form for this system. A coding
is to specify the system as given: specify the slow sdes via a three
component list; and the fast stable sdes via a two component list.

38 stonormalform(

39 {epsilon*y(1),

40 epsilon*y(2),

41 epsilon*(x(1)*y(2)-x(2)*y(1))},

42 {-y(1)-a*y(2)+w(1),

43 -y(2)+a*y(1)+w(2)},

44 {},

45 4 )$

46 end;

Now the approach can only analyse systems which are linearly
diagonalised, but this system has two off-diagonal terms in the y⃗-
sdes (terms that cause oscillations in y⃗ with frequency a as y⃗ decays
in magnitude like e−t). In order to make some sort of progress,
the procedure is brutal with such off-diagonal terms. Anything
linear and off-diagonal is multiplied by the parameter small and
so is treated as asymptotically small. When it does so, it gives the
warning message
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4 offdiagonal: Levy area contraction: off-diagonal example 8

47 ***** Warning ****

48 Off diagonal linear terms in y- or z- equations

49 assumed small. Answers are rubbish if not

50 asymptotically appropriate.

As the message says, the results may consequently be rubbish.

Here then, the procedure analyses the following system which reduce
to the given one for ε = 1 :

ẋ1 = ϵεy1

ẋ2 = ϵεy2

ẋ3 = ϵε
(
− x2y1 + x1y2

)
ẏ1 = −aεy2 + σw1 − y1

ẏ2 = aεy1 + σw2 − y2

That is, the code treats the frequency parameter a as small, and
so the results are appropriate only for small a, as well as only for
small ϵ.

If one really needs to analyse non-small a, then more sophisticated
code has to be developed.

Time dependent coordinate transform This transform is
quite complicated, due to the noise, and involve fast-time future
and history integrals.

y1 = −a2σε2e−1t⋆e−1t⋆e−1t⋆w1 − aσεe−1t⋆e−1t⋆w2 +
σe−1t⋆w1 + Y1

y2 = −a2σε2e−1t⋆e−1t⋆e−1t⋆w2 + aσεe−1t⋆e−1t⋆w1 +
σe−1t⋆w2 + Y2

x1 = aϵσε2
(
e−1t⋆e−1t⋆w2 + e−1t⋆w2

)
+ aϵε2Y2 − ϵσεe−1t⋆w1 −

ϵεY1 +X1

x2 = aϵσε2
(
− e−1t⋆e−1t⋆w1 − e−1t⋆w1

)
− aϵε2Y1 −

ϵσεe−1t⋆w2 − ϵεY2 +X2

x3 = aϵσε2
(
− e−1t⋆e−1t⋆w2 X2 − e−1t⋆e−1t⋆w1 X1 −

e−1t⋆w2X2 − e−1t⋆w1X1

)
+ aϵε2

(
−X2Y2 −X1Y1

)
+

ϵ2σε2
(
et⋆w2 Y1 − e1t⋆w1 Y2

)
+ ϵσε

(
− e−1t⋆w2X1 +

e−1t⋆w1X2

)
+ ϵε

(
X2Y1 −X1Y2

)
+X3

Result normal form DEs

Ẏ1 = −aεY2 − Y1

Ẏ2 = aεY1 − Y2

Ẋ1 = −a2ϵσε3w1 − aϵσε2w2 + ϵσεw1

Ẋ2 = −a2ϵσε3w2 + aϵσε2w1 + ϵσεw2

Ẋ3 = a2ϵσε3
(
− w2X1 + w1X2

)
+ aϵ2σ2ε3

(
e−1t⋆e−1t⋆w2 w2 +

e−1t⋆e−1t⋆w1 w1 + e−1t⋆w2w2 + e−1t⋆w1w1

)
+

aϵσε2
(
w2X2 + w1X1

)
+ ϵ2σ2ε2

(
e−1t⋆w2w1 − e−1t⋆w1w2

)
+

ϵσε
(
w2X1 − w1X2

)
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5 jordanForm: the Jordan form of position-momentum variables 9

• As expected, Y⃗ = 0 is the stochastic slow manifold, and
is exponentially attractive (almost always) in some domain
about the origin.

• The slow X⃗ evolution is independent of Y⃗ : X1, X2 undergo
a correlated ‘slow’ random walk; whereas X3 is dominantly
some multiplicative random walk.

• The time-dependent coordinate transform maps these predic-
tions back into the x⃗, y⃗-space.

But fails to construct a stable manifold This procedure can
directly construct the (slow) centre manifold of the system, just
specify the optional fifth argument as cman. The result is the same
as substituting Y⃗ = 0 into the above, but is significantly more
efficient because the combinatorially exploding algebra is much less.

However, the procedure fails to construct a stable manifold for this
system. Try the following and see several error messages due to a
bad “x-residual component”.

51 stonormalform(

52 {epsilon*y(1), epsilon*y(2),

53 epsilon*(x(1)*y(2)-x(2)*y(1))},

54 {-y(1)-a*y(2)+w(1),

55 -y(2)+a*y(1)+w(2)},

56 {}, 4 , sman)$

The reason is that in the above system the manifold X⃗ = 0 is not

invariant. Instead, here
˙⃗
X has ‘irremovable’ forcing due to the noise

terms, such as ϵσεe−1t⋆w1 .

The procedure does not abandon iteration straight away. Instead,
it attempts more iterations just in case the failure disappears with
further iterations (the procedure halves the maximum number of
iterations allowed each time such a failure is detected, and stops
when the maximum is less than the total number of iterations done
so far). But here, for general wj(t), there is no invariant stable
manifold, so the attempt is abandoned.

In some scenarios you might only be interested in a specific form
of wj(t), such as zero mean periodic wj(t), when a stable manifold
exists but this procedure does not construct it (although the algo-
rithm could be modified to cope). The coded procedure here is for
quite general wj(t), such as white noise.

5 jordanForm: the Jordan form of position-momentum variables

Suppose x(t) is the spatial position of some particle, and you want
to analyse the ‘mechanical’ system of sdes

ẍ = −xy and ẏ = −2y + x2 + ẋ2 + σw(t) ,
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5 jordanForm: the Jordan form of position-momentum variables 10

where w(t) denotes the formal derivative dW/dt of a Stratonovich
Wiener process W (t, ω), or some other time-dependent forcing,
called noise. Introduce position and velocity variables x1 = x and
x2 = ẋ , and also y1 = y to convert to the system of three coupled
first-order sdes

ẋ1 = x2 ,

ẋ2 = −x1y1 ,

ẏ1 = −2y1 + x21 + x22 + σw(t) .

Start by loading the procedure.

57 in_tex "../stoNormForm.tex"$

Execute the construction of a normal form for this system.

58 stonormalform(

59 { x(2)/small,

60 -x(1)*y(1) },

61 { -2*y(1)+x(1)^2+x(2)^2+w(y) },

62 {},

63 3 ,sman)$

64 end;

Why divide x(2) by small? A possible coding is to specify the
system as given, but recall that the slow sdes are always multiplied
by small thus changing the first sde to ẋ1 = εx2 and hence changing
the relation between position and velocity—this would be OK if x2
was viewed as momentum and the particle had large mass. But
what if really do we want x2 to be velocity. Fortunately, the coded
iteration scheme works for systems with linear part in Jordan form,
but one has to code the system as follows. Namely, divide the
off-diagonal term of the Jordan form by small to cancel out the
procedure’s brutal multiplication by small.

Then the coded procedure reports that it analyses the following
system which not only reduces to the given one for ε = 1 , but also
preserves the physical relation between position x1 and velocity x2:

ẋ1 = x2

ẋ2 = −εx1y1

ẏ1 = σwy + ε
(
x22 + x21

)
− 2y1

Further, here ε counts the order of nonlinearity so truncating to
errors O

(
ε3
)
is the same as truncating to errors O

(
|(x⃗, y)|4

)
.

The cost of preserving the physical relation between position x1 and
velocity x2 is that more iterations are needed in the construction.

Time dependent coordinate transform This transform is
quite complicated, due to the noise, and involve fast-time future
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6 slowOsc: Radek’s slow oscillation with fast noise 11

and history integrals.

y1 = σe−2t⋆wy + ε
(
3/4X2

2 − 1/2X2X1 + 1/2X2
1

)
+ Y1

x1 = σε
(
− 1/4e−2t⋆wy X2 − 1/4e−2t⋆wy X1

)
+ ε

(
− 1/4X2Y1 −

1/4X1Y1
)
+X1

x2 = σε
(
1/4e−2t⋆wy X2 + 1/2e−2t⋆wy X1

)
+ ε

(
1/4X2Y1 +

1/2X1Y1
)
+X2

Result normal form DEs

Ẏ1 = ε2
(
1/2X2

2Y1 + 1/2X2X1Y1 − 1/2X2
1Y1

)
− 2Y1

Ẋ1 = σ2ε2
(
− 3/64e−2t⋆wy wyX2 − 3/32e−2t⋆wy wyX1

)
+

σε
(
1/4wyX2 + 1/4wyX1

)
+X2

Ẋ2 = σ2ε2
(
3/32e−2t⋆wy wyX2 + 1/8e−2t⋆wy wyX1

)
+ σε

(
−

1/4wyX2−1/2wyX1

)
+ε2

(
−3/4X2

2X1+1/2X2X
2
1 −1/2X3

1

)
• As expected, Ẏ1 = 0 when Y1 = 0 , and so Y1 = 0 is the
stochastic slow manifold, and is exponentially attractive (al-
most always) in some domain about the origin.

• As expected, the slow X⃗ evolution is independent of Y1: X2 is
approximately a ‘velocity’ variable for ‘position’ X1, and
shows some nonlinear noise affected dynamics.

• The time-dependent coordinate transform maps these pre-
dictions back into the x⃗, y-space. Observe that X⃗ are not
precisely the physical position-veloxity x⃗, but instead are
affected by nonlinearity, and the noise, and their interaction.

• The stochastic slow invariant manifold could be more effi-
ciently constructed by specifying the optional fifth parame-
ter cman to the stonormalform() invocation.

• For this system we can see from the above that also X⃗ = 0
is invariant. Hence a stochastic stable manifold exists. We
may construct it directly by specifying the optional fifth
parameter sman to stonormalform().

6 slowOsc: Radek’s slow oscillation with fast noise

Consider Radek’s system

ẋ = −ϵxz , ẏ = +ϵyz and ż = −(z − 1) + σw(t) .

In this linear system, x, y oscillate with ‘frequency’ ϵz. But z(t)
is an Ornstein–Uhlenbeck process with mean one. What are
the dynamics?

Transform to our standard form via

x = x1 , y = x2 and z = 1 + y1 .

Then start by loading the procedure.
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6 slowOsc: Radek’s slow oscillation with fast noise 12

65 in_tex "../stoNormForm.tex"$

Execute the construction of a normal form for this system.

66 factor x;

67 stonormalform(

68 { -x(2)*(1+y(1)),

69 x(1)*(1+y(1)) },

70 { -y(1)+w(1) },

71 {},

72 4 )$

73 end;

With the above input the procedure analyses the following system:

ẋ1 = x2ε
(
− y1 − 1

)
ẋ2 = x1ε

(
y1 + 1

)
ẏ1 = σw1 − y1

This is precisely the original system, but with variables changed
as above, and with parameter ε = ϵ (here we use the procedure’s
multiplication by ε to incorporate Radek’s ϵ).

Time dependent coordinate transform

y1 = σe−1t⋆w1 + Y1

x1 = −σε2e−1t⋆w1X1Y1 + σεe−1t⋆w1X2 − 1/2ε2X1Y
2
1 + εX2Y1 +

X1

x2 = −σε2e−1t⋆w1X2Y1 − σεe−1t⋆w1X1 − 1/2ε2X2Y
2
1 − εX1Y1 +

X2

Result normal form DEs In such linear systems, the following
normal form is straightforward.

Ẏ1 = −Y1

Ẋ1 = −σεw1X2 − εX2

Ẋ2 = σεw1X1 + εX1

• As expected, Y1 = 0 is the emergent stochastic slow manifold.

• The slow X⃗ evolution clearly oscillates in (X1, X2), Xj ∝ eiθ,
with phase angle θ = ε(t+ σW (t, ω)), recalling W =

∫
w dt .

This phase grows linearly with a superposed random walk.

• The time-dependent coordinate transform maps these pre-
dictions back into the x⃗, y1-plane, and thence to the original
xyz-space.

• In this system, higher-order terms in ε only affect the coordi-
nate transform, they do not change the evolution of X⃗.
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7 linearHyper: simple linear hyperbolic noisy system

The procedure also analyses hyperbolic systems, and recovers
the classic stochastic/non-autonomous results guaranteed by the
Hartman–Grobman Theorem. Consider the following linear sdes
with one stable variable, and one unstable variable:

ẏ1 = −y1 + σw1z1

ż1 = z1 + σw1y1

Start by loading the procedure.

74 in_tex "../stoNormForm.tex"$

Execute the construction of a normal form for this system: the
parameter σ is automatically inserted by the procedure.

75 stonormalform(

76 {},

77 { -y(1)+z(1)*w(1) },

78 { +z(1)+y(1)*w(1) },

79 3 )$

80 end;

Time dependent coordinate transform This simply mixes
Y,Z a little depending upon the noise.

z1 = −σe2t⋆w1 Y1 + Z1

y1 = σe−2t⋆w1 Z1 + Y1

Result normal form DEs In such linear systems the normal
form is straightforward, as follows.

Ż1 = σ2e−2t⋆w1w1Z1 + Z1

Ẏ1 = −σ2e2t⋆w1w1Y1 − Y1

The Y, Z variables are decoupled. Their evolution retains effects
from noise-noise interactions: Z from the past history; and Y from
future anticipation.

8 foliateHyper: Duan’s hyperbolic system for foliation

To illustrate a stochastic/non-autonomous Hartman–Grobman The-
orem, Sun et al. (2011) used the following simple hyperbolic system
with one stable variable, and one unstable variable:

ẏ1 = −y1 + σw1y1

ż1 = z1 + y21 + σw1z1

The stable y-dynamics is simply an Ornstein–Uhlenbeck process,
independent of z(t). The unstable z-dynamics is similar, but with a
quadratic forcing by the stable variable y. Let’s unfold this effect.

Start by loading the procedure.
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81 in_tex "../stoNormForm.tex"$

Execute the construction of a normal form for this system: the
parameter σ is automatically inserted by the procedure.

82 stonormalform(

83 {},

84 { -y(1)+y(1)*w(1) },

85 { +z(1)+y(1)^2+z(1)*w(1) },

86 9 )$

87 end;

In the procedure, the y21 term is automatically multiplied by ε, and
so, in the results, ε counts the order of nonlinearity of each term.
We analyse to high-order, errors O

(
ε9, σ3

)
, because the results are

simple.

Time dependent coordinate transform To decouple the stochas-
tic dynamics, we just need to stochastically ‘bend’ the z-variable.
This bending forms a stochastic foliation of the system.

z1 = −1/3σεe3t⋆w1 Y
2
1 − 1/3εY 2

1 + Z1

y1 = Y1

Result normal form DEs The normal form dynamics is linear
and decoupled, as per Hartman–Grobman, namely

Ż1 = σw1Z1 + Z1 Ẏ1 = σw1Y1 − Y1

9 monahanFive: Monahan’s five examples

Monahan & Culina (2011) discuss stochastic averaging and give
several examples in the body and an appendix, of which we analyse
five. They really need this approach as “a large separation often
does not exist in atmosphere or ocean dynamics” between the fast
and slow time scales.

9.1 Example four: ‘three’ time scales

Monahan & Culina (2011) comment that this, their fourth example,
a linear system, has three time scales. But I do not see these time
scales, I only see varying strength interactions. They consider

dx

dt
= −x+

a√
τ
y and

dy

dt
=

1√
τ
x− 1

τ
y +

b√
τ
Ẇ .

Let’s rescale time, t = τt′ so that d/dt = 1
τ d/dt

′ and Ẇ =
1√
τ
dW/dt′. Then, dropping dashes, the sde system is

dx

dt
= −τx+ a

√
τy and

dy

dt
=

√
τx− y + bẆ .

Start by loading the procedure.
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88 in_tex "../stoNormForm.tex"$

Execute the construction of a normal form for this system. Using
the default inbuilt parametrisation of noise by sigma to represent
parameter b, and using small in the x-sde so that it counts the
number of small

√
τ , code these as the following.

89 factor tau,yy,y,w,ou;

90 stonormalform(

91 { sqrt(tau)*a*y(1)-small*tau*x(1) },

92 { sqrt(tau)*x(1)-y(1)+w(1) },

93 {},

94 4 )$

95 %end; % optionally end examples here

The procedure reports that it analyses the following family

ẋ1 =
√
τy1εa− ε2τx1 ẏ1 = w1σ − y1 +

√
τεx1

in which we indeed see ε only in the grouping ε
√
τ .

Time dependent coordinate transform This is linear as the
system is linear.

y1 = −e−1t⋆e−1t⋆w1 σε2τa− e−1t⋆w1 σε
2τa+ e−1t⋆w1 σ + Y1 +√

τεX1

x1 = −
√
τe−1t⋆w1 σεa−

√
τY1εa+X1

Result normal form DEs The normal form dynamics is linear
and decoupled, as per Hartman–Grobman, namely

Ẏ1 = −Y1ε
2τa− Y1

Ẋ1 = w1σε
3τ
√
τ
(
− 2a2 + a

)
+
√
τw1σεa+ ε2τ

(
X1a−X1

)
Monahan & Culina (2011) derive the last two terms in the X-
equation, but not the first as it is too small for their averaging
analysis. They comment that a > 1 is some sort of difficulty,
presumably because X grows when a > 1: but here we have no
problem with a > 1, especially as the decay rate to the stochastic
slow manifold, the Y -sde, is (1 + τa) which gets stronger with
increasing parameter a.

9.2 Example one: simple rational nonlinear

With ‘small’ scale-separation parameter τ , Monahan & Culina
(2011) first consider the example

dx

dt
= −x+Σ(x)y and

dy

dt
= −1

τ
y +

1√
τ
Ẇ ,

for general smooth functions Σ(x). Rescale time, t = τt′ so that
d/dt = 1

τ d/dt
′ and Ẇ = 1√

τ
dW/dt′. Then, dropping dashes, the

sde is
dx

dt
= −τx+ τΣ(x)y and

dy

dt
= −y + Ẇ .
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The stonormalform procedure is already loaded. Write a message
saying we are now analysing the next system.

96 write "**** Example One of Monahan (2011) ****";

Execute the construction of a normal form for this system. But
let’s restrict the general function Σ(x) to the rational form Σ(x) :=
(a0 + a1x+ a2x

2)/(1 + b1x+ b2x
2). Code this form as the following

(after multiplying through by the denominator).

97 factor df;

98 operator a; defindex a(down);

99 operator b; defindex b(down);

100 stonormalform(

101 { -tau*x(1)*(1+b(1)*x(1)+b(2)*x(1)^2)

102 -df(x(1),t)*(b(1)*x(1)+b(2)*x(1)^2)

103 +tau*y(1)*(a(0)+a(1)*x(1)+a(2)*x(1)^2) },

104 { -y(1)+w(1) },

105 {},

106 3 )$

107 %end; % optionally end examples here

The procedure reports that it analyses the following family

ẋ1 =
dx1
d t ε

(
− b2x

2
1 − b1x1

)
+ y1ετ

(
a2x

2
1 + a1x1 + a0

)
+ ετ

(
−

b2x
3
1 − b1x

2
1 − x1

)
ẏ1 = w1σ − y1

so evaluate the results at ε = 1 to compare with the modelling of
Monahan & Culina (2011).

Time dependent coordinate transform

y1 = e−1t⋆w1 σ + Y1

x1 = e−1t⋆w1 σετ
(
− a2X

2
1 − a1X1 − a0

)
+ Y1ετ

(
− a2X

2
1 −

a1X1 − a0
)
+X1

Result normal form DEs

Ẏ1 = −Y1

Ẋ1 = w1σε
2τ2

(
a2b2X

4
1 − a2X

2
1 + 2a1b2X

3
1 + a1b1X

2
1 + 3a0b2X

2
1 +

2a0b1X1 + a0
)
+ w1σε

2τ
(
− a2b2X

4
1 − a2b1X

3
1 − a1b2X

3
1 −

a1b1X
2
1 − a0b2X

2
1 − a0b1X1

)
+ w1σετ

(
a2X

2
1 + a1X1 + a0

)
+

ε2τ
(
b22X

5
1 + 2b2b1X

4
1 + b2X

3
1 + b21X

3
1 + b1X

2
1

)
+ ετ

(
−

b2X
3
1 − b1X

2
1 −X1

)
Monahan & Culina (2011) derive some of this X equation. The
other terms here are higher order terms that become significant at
finite parameter values. For example, the next correction to their
analysis, w1τ

2(−3a4X
4
1 −2a3X

3
1 −a2X

2
1 +a0), is probably derivable

as τ2(Σ− xΣ′)Ẇ (when rescaled).
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9.3 Example three: several fast stable modes

Monahan & Culina (2011) third considered the example

dx

dt
= −x+Σ(x)∥y⃗∥ and

dy⃗

dt
= −1

τ
y⃗ +

√
2

τ
˙⃗
W,

for general smooth functions Σ(x), and ‘small’ scale separation
parameter τ . As before, rescale time, t = τt′ so that d/dt = 1

τ d/dt
′

and Ẇ = 1√
τ
dW/dt′. Here I also cheat: they have ∥y⃗∥ in the slow

equation; but ∥y⃗∥ is not a smooth multinomial and so my generic
procedure cannot apply; instead I replace ∥y⃗∥ with ∥y⃗∥2 which has
the same symmetry but is multinomial. Then, upon the rescaling
of time, and dropping dashes, the sde is

dx

dt
= −τx+ τΣ(x)∥y⃗∥2 and

dy⃗

dt
= −y⃗ + σ

˙⃗
W.

The stonormalform procedure is already loaded. Write a message
saying we are now analysing the next system.

108 write "**** Example Three of Monahan (2011) ****";

Restrict analysis to the general quartic Σ(x) := a0+a1x+ · · ·+a4x
4,

and so code the system as the following (the generic program
automatically inserts the σ in the noise). Currently restrict to just
a two component y⃗ as I do not see any reason for any more, and
Monahan & Culina (2011) do not appear to specify.

109 stonormalform(

110 { -tau*x(1)+tau*(y(1)^2+y(2)^2)

111 *(a(0)+a(1)*x(1)+a(2)*x(1)^2

112 +a(3)*x(1)^3+a(4)*x(1)^4) },

113 { -y(1)+w(1),

114 -y(2)+w(2) },

115 {},

116 3 )$

117 %end; % optionally end examples here

The procedure reports that it analyses the following family

ẋ1 = y22ετ
(
a4x

4
1 + a3x

3
1 + a2x

2
1 + a1x1 + a0

)
+ y21ετ

(
a4x

4
1 + a3x

3
1 +

a2x
2
1 + a1x1 + a0

)
− ετx1

ẏ1 = w1σ − y1

ẏ2 = w2σ − y2

in which we see ε only in the grouping ετ , so truncating to er-
rors O

(
ε3
)
is the same as to errors O

(
τ3
)
.

Time dependent coordinate transform

y1 = e−1t⋆w1 σ + Y1
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y2 = e−1t⋆w2 σ + Y2

x1 = et⋆w2 Y2σετ
(
− a4X

4
1 − a3X

3
1 − a2X

2
1 − a1X1 − a0

)
+

e−1t⋆w2 Y2σετ
(
− a4X

4
1 − a3X

3
1 − a2X

2
1 − a1X1 − a0

)
+

et⋆w1 Y1σετ
(
− a4X

4
1 − a3X

3
1 − a2X

2
1 − a1X1 − a0

)
+

e−1t⋆w1 Y1σετ
(
−a4X

4
1−a3X

3
1−a2X

2
1−a1X1−a0

)
+Y 2

2 ετ
(
−

1/2a4X
4
1−1/2a3X

3
1−1/2a2X

2
1−1/2a1X1−1/2a0

)
+Y 2

1 ετ
(
−

1/2a4X
4
1 − 1/2a3X

3
1 − 1/2a2X

2
1 − 1/2a1X1 − 1/2a0

)
+X1

The complicated form of x1 only reflects the transient effects of the
decaying Y⃗ : once Y⃗ → 0, then x1 = X1.

Result normal form DEs

Ẏ1 = −Y1

Ẏ2 = −Y2

Ẋ1 = e−1t⋆w2w2σ
2ε2τ2

(
− 3/2a4X

4
1 −a3X

3
1 − 1/2a2X

2
1 +1/2a0

)
+

e−1t⋆w2w2σ
2ετ

(
a4X

4
1 + a3X

3
1 + a2X

2
1 + a1X1 + a0

)
+

e−1t⋆w1w1σ
2ε2τ2

(
− 3/2a4X

4
1 −a3X

3
1 − 1/2a2X

2
1 +1/2a0

)
+

e−1t⋆w1w1σ
2ετ

(
a4X

4
1 + a3X

3
1 + a2X

2
1 + a1X1 + a0

)
− ετX1

These show the decay of Y⃗ , and that the irreducible noise-noise
interactions are the only modifications to the slow decay of X1, and
hence of x1.

9.4 Example two: irregular slow manifold

Monahan & Culina (2011) second consider the example sdes

dx

dt
= x− x3 +Σ(x)y and

dy

dt
= − 1

xτ
y +

1√
τ
Ẇ ,

for general smooth functions Σ(x), and ‘small’ scale separation
parameter τ . Since the y-dynamics are exponentially unstable for
negative x, we restrict attention to x > 0 . Even for positive x
the system is singular as x → 0 so the slow manifold is irregular
in some sense (although ‘singular’ in a good way in that the scale
separation between fast and slow becomes infinite). Let’s be more
sophisticated in rescaling time: let’s choose the new fast time t′

so that dt = xτ dt′ ; that is, t′ =
∫
(xτ)−1dt which would not be

explicitly known until after a solution x(t′) is found. I presume that
the noise then transforms as Ẇ = 1√

xτ
dW/dt′ (needs checking).

Then, dropping dashes, the sdes are

dx

dt
= τ

[
x2 − x4 + xΣ(x)y

]
and

dy

dt
= −y +

√
xẆ .

The
√
x is a problem in my generic procedure as it requires multi-

nomial systems, so transform to x = x21 (not the usual x = x1) so
that 2x1dx1 = dx . Then the sde system becomes

dx1
dt

=
1

2
τ
[
x31 − x71 + x1Σ(x

2
1)y

]
and

dy

dt
= −y + x1Ẇ .
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The stonormalform procedure is already loaded. Write a message
saying we are now analysing the next system.

118 write "**** Example Two of Monahan (2011) ****";

Restricting to the general linear Σ(x) := a0 + a1x, code the sde
system as the following (remember x(1) = x1 =

√
x).

119 stonormalform(

120 { 1/2*tau*( x(1)^3 -x(1)^7

121 +x(1)*(a(0)+a(1)*x(1)^2)*y(1) ) },

122 { -y(1) +x(1)*w(1) },

123 {},

124 3 )$

125 %end; % optionally end examples here

The procedure reports that it analyses the following family

ẋ1 = y1ετ
(
1/2a1x

3
1 + 1/2a0x1

)
+ ετ

(
− 1/2x71 + 1/2x31

)
ẏ1 = w1σx1 − y1

Again, usefully, the artificial ε only occurs in the combination ετ
and so just counts the number of factors of τ in each term. That is,
errors O

(
ε3
)
is the same as errors O

(
τ3
)
.

Time dependent coordinate transform Straightforwardly

y1 = e−1t⋆e−1t⋆w1 σετ
(
1/2X7

1 − 1/2X3
1

)
+ e−1t⋆w1 σX1 + Y1

x1 = e−1t⋆w1 σετ
(
− 1/2a1X

4
1 − 1/2a0X

2
1

)
+ Y1ετ

(
− 1/2a1X

3
1 −

1/2a0X1

)
+X1

Result normal form DEs As expected, Y1 = 0 is a stochastic
slow manifold, that is almost surely emergent in some domain.

Ẏ1 = et⋆w1w1Y1σ
2ε2τ2

(
1/4a21X

6
1 + 1/2a1a0X

4
1 + 1/4a20X

2
1

)
+

e−1t⋆w1w1Y1σ
2ε2τ2

(
3/4a21X

6
1 + a1a0X

4
1 + 1/4a20X

2
1

)
+

w1Y1σε
2τ2

(
− a1X

9
1 − 3/2a0X

7
1 + 1/2a0X

3
1

)
+ w1Y1σετ

(
−

1/2a1X
3
1 − 1/2a0X1

)
− Y1

Ẋ1 = e−1t⋆w1w1σ
2ε2τ2

(
− 1/4a21X

7
1 − 1/2a1a0X

5
1 − 1/4a20X

3
1

)
+

w1σε
2τ2

(
a1X

10
1 + 3/2a0X

8
1 − 1/2a0X

4
1

)
+

w1σετ
(
1/2a1X

4
1 + 1/2a0X

2
1

)
+ ετ

(
− 1/2X7

1 + 1/2X3
1

)
Using just the leading order terms for Ẋ1, the terms linear in τ ,
and recalling X1 ≈ x1 =

√
x , the last sde gives the model

dx

dt′
≈ τ

[
x2 − x4 + x3/2Σ(x)σ

dW

dt′

]
.

But recall that dt′ = dt/(xτ) (although one should be more careful
as X1 ≈

√
x , not exact equality) and similarly dW/dt′ =

√
xτẆ

so that this model becomes

dx

dt
≈ x− x3 +

√
τxΣ(x)σ

dW

dt
.
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This agrees with the Stratonovich part of (A28) by Monahan &
Culina (2011). But again, the above derivation has the systematic
higher order corrections that are needed for finite scale separation τ .

9.5 Idealised Stommel-like model of meridional overturning circulation

Monahan & Culina (2011) also analyse the Idealised Stommel-like
model, for small scale-separation parameter τ ,

dx

dt
= µ− |y − x|x+ σAẆ1 ,

dy

dt
= +

1

τ
(1− y)− |y − x|y +

√
2

τ
σMẆ2 .

The mod-functions do not fit into my generic computer algebra so
replace them with squares to preserve the symmetry. As before,
rescale time, t = τt′ so that d/dt = 1

τ d/dt
′ and Ẇj =

1√
τ
dWj/dt

′.

Since for small τ , the fast variable y is strongly attracted to one,
change the reference point for y by setting y = 1 + y1(t). Then the
sdes becomes akin to

dx

dt′
= ϵ2

[
µ− (1 + y1 − x)2x

]
+ ϵσA

dW1

dt′
,

dy1
dt′

= −y1 − ϵ2(1 + y1 − x)2(1 + y1) +
√
2σM

dW2

dt′
.

The stonormalform procedure is already loaded. Write a message
saying we are now analysing the next system.

126 write "**** Stommel-like model of Monahan (2011) ****";

127 factor rho;

Let ρ := σA/(
√
2σM ) , use the inbuilt σ :=

√
2σM , and invoke

small to correctly count the number of small
√
τs in the analysis.

Code the above dynamics as the following.

128 stonormalform(

129 { small*tau*(mu-(1+y(1)-x(1))^2*x(1))

130 +small*sqrt(tau)*rho*w(1) },

131 { -y(1)-small*tau*(1+y(1)-x(1))^2*(1+y(1))+w(2) },

132 {},

133 4 )$

134 end; % finish here if not before

The procedure reports that it analyses the following family, an
expended version of the prescribed system,

ẋ1 =
√
τw1ρσε− y21ε

2τx1 + y1ε
2τ
(
2x21 − 2x1

)
+ ε2τ

(
− x31 +

2x21 − x1 + µ
)

ẏ1 = w2σ − y31ε
2τ + y21ε

2τ
(
2x1 − 3

)
+ y1ε

2τ
(
− x21 + 4x1 − 3

)
−

y1 + ε2τ
(
− x21 + 2x1 − 1

)
Again the artificial ε only occurs in the combination ε2τ and so just
counts the number of factors of τ in each term. That is, errors O

(
ε4
)

is the same as errors O
(
τ2
)
.
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Time dependent coordinate transform Straightforward but
complicated in detail:

y1 = e−1t⋆e−1t⋆w2 σε2τ
(
−X2

1 + 4X1 − 3
)
+ 3/2et⋆w2 Y

2
1 σε

2τ +
3/2e−1t⋆w2 Y

2
1 σε

2τ+e−1t⋆w2 Y1σε
2τ
(
−4X1+6

)
+e−1t⋆w2 σ+

1/2Y 3
1 ε

2τ + Y 2
1 ε

2τ
(
− 2X1 +3

)
+ Y1 + ε2τ

(
−X2

1 +2X1 − 1
)

x1 = et⋆w2 Y1σε
2τX1 + e−1t⋆w2 Y1σε

2τX1 + e−1t⋆w2 σε
2τ
(
−

2X2
1 + 2X1

)
+ 1/2Y 2

1 ε
2τX1 + Y1ε

2τ
(
− 2X2

1 + 2X1

)
+X1

Result normal form DEs As expected, Y1 = 0 is a stochastic
slow manifold which is almost surely emergent:

Ẏ1 = −3e−1t⋆w2w2Y1σ
2ε2τ + 4

√
τe−1t⋆w2w1Y1ρσ

2ε3τ +
w2Y1σε

2τ
(
4X1 − 6

)
+ Y1ε

2τ
(
−X2

1 + 4X1 − 3
)
− Y1

Ẋ1 = −e−1t⋆w2w2σ
2ε2τX1 + e−1t⋆w2w1ρσ

2ε3τ3/2
(
4X1 − 2

)
+

w2σε
2τ
(
2X2

1 −2X1

)
+
√
τw1ρσε+ε2τ

(
−X3

1 +2X2
1 −X1+µ

)
Deterministically, this model has multiple equilibria for small µ,
but only one equilibria for µ > 4/27 , at finite amplitude. The
noise Ẇ1 causes transitions between such multiple equilibria, and
the multiplicative noise Ẇ2 contributes as well. But the same
order of smallness is the first term in the X1 sde above which is a
quadratic noise-noise interaction that has a mean drift effect which
should enhance the stability of the small x equilibrium.

10 majdaTriad: Majda’s two triad models

Majda et al. (2002) investigated averaging in two 3D sde systems.
Let’s compare with their stochastic normal form.

10.1 Multiplicative triad model

The multiplicative triad model of Majda et al. (2002) consists of
three modes, v1, v2 and v3. These evolve in time according to

dv1
dt

= b1v2v3 ,
dv2
dt

= b2v1v3 ,
dv3
dt

= −v3 + b3v1v2 + σẆ ,

where bj and σ are some constants, and the noise forces the third
mode. Here I have already scaled the equations so that the rate of
decay of the third mode is one. Thus on long time scales we expect
the third mode to be essentially negligible and the system to be
modelled by the relatively slow evolution of the first two modes.

Start by loading the procedure.

135 in_tex "../stoNormForm.tex"$

The system uses parameters bj so define

136 operator b; defindex b(down);

Execute the construction of a normal form for this system using
xj = vj and y1 = v3 .
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137 factor yy;

138 stonormalform(

139 { b(1)*x(2)*y(1),

140 b(2)*x(1)*y(1) },

141 { -y(1)+b(3)*x(1)*x(2)+w(3) },

142 {},

143 4 )$

144 %end; % optionally end examples here

The procedure reports that it analyses the following family

ẋ1 = εb1x2y1 ẋ2 = εb2x1y1 ẏ1 = w3σ + εb3x2x1 − y1

Here, ε counts the order of nonlinearity so that errors O
(
ε4
)
are

errors O
(
|v⃗|5 + σ5

)
(due to the noise driving fluctuations of size σ).

Time dependent coordinate transform Straightforwardly,

y1 = e−1t⋆e−1t⋆w3 σε2
(
− b3b2X

2
1 − b3b1X

2
2

)
+ e−1t⋆w3 σε

2
(
−

b3b2X
2
1 − b3b1X

2
2

)
+ e−1t⋆w3 σ + Y1 + εb3X2X1

x1 = e−1t⋆w3 Y1σε
2b2b1X1 − e−1t⋆w3 σεb1X2 + 1/2Y 2

1 ε
2b2b1X1 −

Y1εb1X2 +X1

x2 = e−1t⋆w3 Y1σε
2b2b1X2 − e−1t⋆w3 σεb2X1 + 1/2Y 2

1 ε
2b2b1X2 −

Y1εb2X1 +X2

Result normal form DEs As expected, Y1 = 0 is the emergent
(almost always) stochastic slow manifold.

Ẏ1 = 4w3Y1σε
3b3b2b1X2X1 + Y1ε

2
(
− b3b2X

2
1 − b3b1X

2
2

)
− Y1

Ẋ1 = w3σε
3
(
−2b3b2b1X2X

2
1−2b3b

2
1X

3
2

)
+w3σεb1X2+ε2b3b1X

2
2X1

Ẋ2 = w3σε
3
(
−2b3b

2
2X

3
1−2b3b2b1X

2
2X1

)
+w3σεb2X1+ε2b3b2X2X

2
1

Majda et al. (2002) predicts, their equation (52), the two leading
order terms in the deterministic part and the linear noise part. I
suspect their first term in each equation is an Ito version of my
Stratonovich modelling. All higher order terms are missed by their
averaging, but easily constructed here by increasing the argument 4
to the procedure.

10.2 Additive triad model

The additive triad model of Majda et al. (2002) consists of three
modes, v1, v2 and v3, as before. However, these now evolve in time
according to

dv1
dt

= b1v2v3 ,

dv2
dt

= −v2 + b2v1v3 + σ2Ẇ2 ,

dv3
dt

= −v3 + b3v1v2 + σ3Ẇ3 ,
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where bj and σj are some constants, and there is independent
stochastic forcing of the second and third modes. Here I have
already scaled the equations so that the rate of decay of both the
second and third mode is one.2 Thus on long time scales we expect
the second and third modes to be essentially negligible and the
system to be modelled by the relatively slow evolution of the first
mode. This section constructs the stochastic normal form of its
centre manifold model as the basis for a model over long time scales
with new noise processes.

The procedure stonormalform is already loaded. Write a message
saying we are now analysing the next system.

145 write "**** Additive Triad system of Majda (2002) ****";

Execute the construction of a normal form for this system using
x1 = v1 , yj = vj+1 , and bj1σ = σj .

146 stonormalform(

147 { b(1)*y(2)*y(1) },

148 { -y(1)+b(2)*x(1)*y(2)+b(21)*w(2),

149 -y(2)+b(3)*x(1)*y(1)+b(31)*w(3) },

150 {},

151 3 )$

152 end; % finish here if not before

The procedure reports that it analyses the following family

ẋ1 = εb1y2y1

ẏ1 = σb21w2 + εb2x1y2 − y1

ẏ2 = σb31w3 + εb3x1y1 − y2

Here, ε counts the order of nonlinearity so that the errors O
(
ε3
)

are errors O
(
|v⃗|4 + σ4

)
(due to the noise driving fluctuations of

size σ).

Time dependent coordinate transform Straightforwardly,

y1 = Y1 + σεb31b2e
−1t⋆e−1t⋆w3 X1 + σb21e

−1t⋆w2

y2 = Y2 + σεb21b3e
−1t⋆e−1t⋆w2 X1 + σb31e

−1t⋆w3

x1 = −1/2Y2Y1εb1+Y2σε
(
− 1/2b21b1e

t⋆w2 − 1/2b21b1e
−1t⋆w2

)
+

Y1σε
(
− 1/2b31b1e

t⋆w3 − 1/2b31b1e
−1t⋆w3

)
+X1

Result normal form DEs As expected, Y1 = Y2 = 0 is the
emergent (almost always) stochastic slow manifold. Unusually, on

2 In contrast, Majda et al. (2002) set the two modes to have different decay
rates. Do not expect much difference in using the same decay rate, it is just
more convenient that the memory convolutions are then identical for the two
modes rather than being different. Having the decay rates the same is also
closer to my expected application to spatial problems.
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this slow manifold x1 = X1 exactly (to at least the next few orders).

Ẏ1 = Y2σ
2ε2

(
− 1/2b31b21b2b1e

−1t⋆e−1t⋆w3 w2 −
1/2b31b21b2b1e

−1t⋆w3w2 − 1/2b31b21b2b1e
−1t⋆w2w3

)
+

Y2εb2X1 + Y1σ
2ε2

(
− 1/2b231b2b1e

−1t⋆e−1t⋆w3 w3 −
1/2b231b2b1e

−1t⋆w3w3

)
− Y1

Ẏ2 = Y2σ
2ε2

(
− 1/2b221b3b1e

−1t⋆e−1t⋆w2 w2 −
1/2b221b3b1e

−1t⋆w2w2

)
− Y2 + Y1σ

2ε2
(
−

1/2b31b21b3b1e
−1t⋆e−1t⋆w2 w3 − 1/2b31b21b3b1e

−1t⋆w3w2 −
1/2b31b21b3b1e

−1t⋆w2w3

)
+ Y1εb3X1

Ẋ1 = σ2ε2
(
1/2b231b2b1e

−1t⋆e−1t⋆w3 w3X1 +
1/2b231b2b1e

−1t⋆w3w3X1 + 1/2b221b3b1e
−1t⋆e−1t⋆w2 w2X1 +

1/2b221b3b1e
−1t⋆w2w2X1

)
+ σ2ε

(
1/2b31b21b1e

−1t⋆w3w2 +
1/2b31b21b1e

−1t⋆w2w3

)
The only terms in the model for Ẋ1 are the quadratic noise-noise
interaction terms. Majda et al. (2002) recognise the last, σ2 term,
but not the first, X1σ

2 term. They represent the last as a mean
drift and independent noise (the mean drift comes from the Ito
representation of the above Stratonovich noise-noise interaction).

11 nonautoTwo: Potzsche and Rasmussen non-autonomous examples

Potzsche & Rasmussen (2006) establish Taylor approximations of
various integral manifolds of non-autonomous systems. They give
two examples.

11.1 Lorenz near the pitchfork bifurcation

Example 5.1 of Potzsche & Rasmussen (2006) is

ẋ1 = σϵ(x2 − x1),

ẋ2 = ρϵx1 − x2 − x1x3 ,

ẋ3 = −βϵx3 + x1x2 .

where parameters are σϵ = σ0 + ϵσ(t), ρϵ = 1 + ρ0 + ϵρ(t) and
βϵ = β0 + ϵβ(t). When there is no parametric fluctuations, ϵ = 0 ,
there is a pitchfork bifurcation as ρ0 crosses zero so they set ρ0 = 0 .
For the general procedure we must set σ0 and β0 to some definite
values, here σ0 = β0 = 1 .

153 s0:=beta0:=1;

154 s1:=s0/(s0+1);

To analyses dynamics at this pitchfork bifurcation in the presence
of fluctuations, Potzsche & Rasmussen (2006) [p.449] take a linear
transform of the system to variables

y⃗ =

−σ0 0 1
1 0 1
0 1 0

 x⃗ .
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In the following coding I use x(1) = y3, y(1) = y1 and y(2) = y2 ;
there are no unstable modes.

There is a notational glitch in that the procedure uses σ for the size
of the non-autonomous effects, whereas they use σ as a parameter
to the Lorenz system. Herein let s denote their σ, and let σ denote
their ϵ. Then their fluctuations ϵρ(t) are represented in the coded
input by w(rho) whereas in the output it is represented by σwρ,
and similarly for the other non-autonomous quantities.

Start by loading the procedure.

155 in_tex "../stoNormForm.tex"$

Execute the construction of a normal form for the system.

156 factor yy,y,xx,x;

157 stonormalform(

158 { s0*s1*y(1)*y(2) -s1*x(1)*y(2) +s1*x(1)*w(rho)

159 +(w(s)-w(rho)/(s0+1))*y(1) },

160 { -(s0+1)*y(1)+s1*y(1)*y(2)-x(1)*y(2)/(s0+1)

161 +w(rho)/(s0+1)*x(1)

162 -(w(s)+w(rho)/(s0+1))*y(1),

163 -beta0*y(2)-s0*y(1)^2+(1-s0)*x(1)*y(1)+x(1)^2

164 -w(beta)*y(2) },

165 {},

166 3 )$

167 %end; % optionally end examples here

The procedure reports that it analyses the following family

ẋ1 = −1/2x1y2ε+ 1/2x1σwρ + 1/2y2y1ε+ y1σ
(
− 1/2wρ + ws

)
ẏ1 = −1/2x1y2ε+1/2x1σwρ+1/2y2y1ε+y1σ

(
−1/2wρ−ws

)
−2y1

ẏ2 = x21ε− y2σwβ − y2 − y21ε

Time dependent coordinate transform Straightforwardly,

y1 = X1Y2σε
(
− 1/2e−1t⋆wβ + e−1t⋆wρ − 1/4e−2t⋆wρ +

1/2e−1t⋆ws

)
− 1/2X1Y2ε+ 1/2X1σe

−2t⋆wρ +
Y2Y1σε

(
1/2et⋆wβ − 1/4e2t⋆wρ + 1/3et⋆wρ + 1/2e2t⋆ws −

1/2et⋆ws

)
− 1/2Y2Y1ε+ Y1

y2 = X2
1σε

(
− e−1t⋆wβ − e−1t⋆wρ

)
+X2

1ε+X1Y1σε
(
e2t⋆wρ −

2/3et⋆wρ + 1/3e−2t⋆wρ − 2e2t⋆ws + 2e1t⋆ws

)
+ Y2 +

Y 2
1 σε

(
1/3e3t⋆wβ − 1/3e3t⋆wρ − 2/3e3t⋆ws

)
+ 1/3Y 2

1 ε

x1 = X1Y2σε
(
− 1/2et⋆wβ − 1/3et⋆wρ − 1/12e−2t⋆wρ +

1/2et⋆ws

)
+ 1/2X1Y2ε+X1 + Y2Y1σε

(
1/6e3t⋆wβ −

1/3e3t⋆wρ + 1/4e2t⋆wρ + 7/6e3t⋆ws − 1/2e2t⋆ws

)
−

1/6Y2Y1ε+ Y1σ
(
1/2e2t⋆wρ − e2t⋆ws

)
Result normal form DEs As expected, Y1 = Y2 = 0 is the
emergent slow manifold, albeit hideously complicated sdes due to
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the nonlinear interaction of the three non-autonomous effects.

Ẏ1 = X2
1Y1σ

2ε2
(
1/2e2t⋆e2t⋆wρ wρ + 1/4e−2t⋆e−2t⋆wρ wρ −

1/2e−2t⋆e−2t⋆wρ ws − e2t⋆e2t⋆ws wρ + 1/12e2t⋆wβ wρ +
1/2e−1t⋆wβ wβ + 1/3e−1t⋆wβ wρ − 1/2e−1t⋆wβ ws −
3/4e2t⋆wρwβ + 13/48e2t⋆wρwρ + 3/8e2t⋆wρws +
1/3et⋆wρwβ − 2/3et⋆wρwρ − 1/3et⋆wρws +
1/2e−1t⋆wρwβ + 1/3e−1t⋆wρwρ − 1/2e−1t⋆wρws −
1/6e−2t⋆wρwβ + 7/12e−2t⋆wρwρ − 7/12e−2t⋆wρws +
3/2e2t⋆wswβ − 3/8e2t⋆wswρ − 3/4e2t⋆wsws − et⋆wswβ +
2et⋆wswρ + et⋆wsws

)
+X2

1Y1σε
2
(
− 1/2wβ − 3/4wρ −

1/4ws

)
+ 1/2X2

1Y1ε
2 +X1Y

2
2 σ

2ε2
(
− 1/8e2t⋆e2t⋆wρ wρ +

1/4e2t⋆e2t⋆ws wρ − 1/12e2t⋆wβ wρ + 1/4et⋆wβ wβ −
1/2et⋆wβ wρ − 1/4et⋆wβ ws + 1/4e−1t⋆wβ wβ +
1/6e−1t⋆wβ wρ − 1/4e−1t⋆wβ ws + 1/96e2t⋆wρwρ +
1/6et⋆wρwβ − 1/3et⋆wρwρ − 1/6et⋆wρws −
1/2e−1t⋆wρwβ − 1/3e−1t⋆wρwρ + 1/2e−1t⋆wρws −
1/12e−2t⋆wρwβ + 1/96e−2t⋆wρwρ − 1/6e−2t⋆wρws −
1/6e2t⋆wswρ − 1/4et⋆wswβ + 1/2e1t⋆wswρ + 1/4et⋆wsws −
1/4e−1t⋆wswβ − 1/6e−1t⋆wswρ + 1/4e−1t⋆wsws

)
+

3/4X1Y
2
2 σε

2wρ − 1/2X1Y
2
2 ε

2 + Y1σ
2
(
1/4e2t⋆wρwρ −

1/2e2t⋆wswρ

)
+ Y1σ

(
− 1/2wρ − ws

)
− 2Y1

Ẏ2 = X2
1Y2σ

2ε2
(
et⋆wβ wβ + et⋆wβ wρ − 1/3e−1t⋆wβ wρ +

e−1t⋆wβ ws + 2/3et⋆wρwβ + 2/3et⋆wρwρ + 2/3e−1t⋆wρwρ −
2e−1t⋆wρws + 1/3e−2t⋆wρwβ − 13/24e−2t⋆wρwρ +
5/6e−2t⋆wρws − et⋆wswβ − et⋆wswρ + 1/3e−1t⋆wswρ −
e−1t⋆wsws

)
+X2

1Y2σε
2
(
− wβ − 1/2wρ + ws

)
+X2

1Y2ε
2 −

Y2σwβ − Y2

Ẋ1 = X3
1σ

2ε2
(
− 1/4e−2t⋆e−2t⋆wρ wρ + 1/2e−2t⋆e−2t⋆wρ ws −

1/2e−1t⋆wβ wβ − 1/3e−1t⋆wβ wρ + 1/2e−1t⋆wβ ws +
1/4e−2t⋆wβ wρ − 1/2e−2t⋆wβ ws − 1/2e−1t⋆wρwβ −
1/3e−1t⋆wρwρ + 1/2e−1t⋆wρws − 1/12e−2t⋆wρwβ −
13/48e−2t⋆wρwρ + 3/8e−2t⋆wρws − 1/8e−2t⋆wswρ +
1/4e−2t⋆wsws

)
+X3

1σε
2
(
1/2wβ+3/4wρ−1/4ws

)
−1/2X3

1ε
2+

X1σ
2
(
− 1/4e−2t⋆wρwρ + 1/2e−2t⋆wρws

)
+ 1/2X1σwρ

In their analysis Potzsche & Rasmussen (2006) explicitly report the
last and third-to-last terms above, for these choices of σ0 and β0,
to deduce their model (5.3) which here is

Ẋ ≈ 1
2σwρX − 1

2X
3.

Nice agreement.

11.2 Fluctuating kdV example

Potzsche & Rasmussen (2006) [Example 5.4] seek travelling wave
solutions, u(x− ct) with wave speed c, of a modified KdV equation.
This leads to the following system

ẋ1 = x2 , ẋ2 = x3 , ẋ3 = c2x2 − a(t)x21x2 .
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This analysis is for wave speed c2 = 1 . A transform to diagonalise
the linear part into slow variable x, stable y and unstable z is then
that x1 = x + y + z , x2 = z − y and x3 = z + y . Using w(a) to
denote the variable coefficient a(t), it is represented in this output
by σwa.

The procedure stonormalform is already loaded. Write a message
saying we are now analysing the next system.

168 write "**** Fluctuating kdV example of P&R (2006) ****";

169 factor zz,z;

Execute the construction of a normal form for this system.

170 rhs:=w(a)*(x(1)+y(1)+z(1))^2*(z(1)-y(1))$

171 stonormalform(

172 { rhs },

173 { -y(1)-rhs/2 },

174 { +z(1)-rhs/2 },

175 3 )$

176 end; % finish here if not before

The procedure reports that it analyses the following family

ẋ1 = −x21y1σwa + x21z1σwa − 2x1y
2
1σwa + 2x1z

2
1σwa − y31σwa −

y21z1σwa + y1z
2
1σwa + z31σwa

ẏ1 = 1/2x21y1σwa − 1/2x21z1σwa + x1y
2
1σwa − x1z

2
1σwa +

1/2y31σwa + 1/2y21z1σwa − 1/2y1z
2
1σwa − y1 − 1/2z31σwa

ż1 = 1/2x21y1σwa − 1/2x21z1σwa + x1y
2
1σwa − x1z

2
1σwa +

1/2y31σwa + 1/2y21z1σwa − 1/2y1z
2
1σwa − 1/2z31σwa + z1

Time dependent coordinate transform Straightforwardly,

z1 = −1/2X2
1Y1σe

2t⋆wa −X1Y
2
1 σe

3t⋆wa −X1Z
2
1σe

−1t⋆wa −
1/2Y 3

1 σe
4t⋆wa − 1/2Y 2

1 Z1σe
2t⋆wa − 1/2Z3

1σe
−2t⋆wa + Z1

y1 = −1/2X2
1Z1σe

−2t⋆wa −X1Y
2
1 σe

t⋆wa −X1Z
2
1σe

−3t⋆wa −
1/2Y 3

1 σe
2t⋆wa − 1/2Y1Z

2
1σe

−2t⋆wa + Y1 − 1/2Z3
1σe

−4t⋆wa

x1 = X2
1Y1σe

t⋆wa +X2
1Z1σe

−1t⋆wa + 2X1Y
2
1 σe

2t⋆wa +
2X1Z

2
1σe

−2t⋆wa +X1 + Y 3
1 σe

3t⋆wa + Y 2
1 Z1σe

t⋆wa +
Y1Z

2
1σe

−1t⋆wa + Z3
1σe

−3t⋆wa

Result normal form DEs

Ż1 = −1/4X4
1Z1σ

2e−2t⋆wawa +X2
1Y1Z

2
1σ

2
(
3/4e2t⋆wawa −

et⋆wawa + 5/4e−2t⋆wawa − 2e−3t⋆wawa

)
− 1/2X2

1Z1σwa +
Y 2
1 Z

3
1σ

2
(
3/4e2t⋆wawa − et⋆wawa − 3/4e−2t⋆wawa +

e−3t⋆wawa − 3/4e−4t⋆wawa

)
− 1/2Y1Z

2
1σwa + Z1

Ẏ1 = 1/4X4
1Y1σ

2e2t⋆wawa +X2
1Y

2
1 Z1σ

2
(
2e3t⋆wawa −

5/4e2t⋆wawa+e−1t⋆wawa−3/4e−2t⋆wawa

)
+1/2X2

1Y1σwa+
Y 3
1 Z

2
1σ

2
(
3/4e4t⋆wawa − e3t⋆wawa + 3/4e2t⋆wawa +

e−1t⋆wawa − 3/4e−2t⋆wawa

)
+ 1/2Y 2

1 Z1σwa − Y1
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Ẋ1 = X3
1Y1Z1σ

2
(
− 2e2t⋆wawa + 2et⋆wawa − 2e−1t⋆wawa +

2e−2t⋆wawa

)
+X1Y

2
1 Z

2
1σ

2
(
− 3e3t⋆wawa + 2e2t⋆wawa +

et⋆wawa − e−1t⋆wawa − 2e−2t⋆wawa + 3e−3t⋆wawa

)
Since Z1 = 0 is invariant, putting Z1 = 0 into the coordinate trans-
form gives the centre-stable manifold. Then the expression for z1
in the above coordinate transform leads to the same convolutions
as those of Potzsche & Rasmussen (2006) [pp.453–4]. Conversely,
since Y1 = 0 is invariant, putting Y1 = 0 gives the centre-unstable
manifold and the expression for y1 above leads to the same convo-
lutions as those of Potzsche & Rasmussen (2006). Presumably the
distortions of the other variables have a higher order influence on
this nice agreement.

The X1-evolution is zero on either of these invariant manifolds.

12 noisyMMH: noisy Michaelis–Menten–Henri chemical kinetics

The Michaelis–Menten–Henri system, in non-dimensional form, is

ẋ = ϵ[−x+ (x+ κ− λ)y], ẏ = x− (x+ κ)y .

The usual approach is singular perturbation theory, but let’s not
obfuscate with singular limits, and instead use the clarity of being
regular. A manifold of equilibria occur at y = x/(x + κ) and
ϵ = 0 (also if ϵ ≠ 0 and λ = 0 but we do not consider this case).
Let’s explore dynamics based at arbitrary point on this equilibrium
manifold: substitute x(t) = x0+x1(t) and y(t) = x0/(x0+κ)+y1(t).
Also, to get the decay rate of y1 to be a simple number, stretch
time by the factor x0 + κ: that is, (x0 + κ)dt = dτ where τ is the
time of the analysis so that

1

x0 + κ
ẋ1(t) = x′1(τ),

1

x0 + κ
ẏ1(t) = y′1(τ).

This does mean that we have to be careful interpreting the results.
Hence derive

x′1 =
ϵ

x0 + κ
[−x0 − x1 + (x0 + x1 + κ− λ)(x0/(x0 + κ) + y1)] ,

y′1 = −y1 +
1

x0 + κ

[
−x1y1 + x0 + x1 −

(x0 + x1 + κ)x0
x0 + κ

]
.

As a prototypical example, let’s investigate the simplest stochastic
effects on this MM system of additive noises w1(τ) and w2(τ). The
additive noise transforms to a multiplicative noise on the slow
manifold, so it is important to remember that all analysis and
results are in the Stratonovich interpretation.

The analysis here is strong, pathwise. The transformations here only
rely on the ‘noise’ being measurable, so the results also apply to
deterministic non-autonomous forcing. The analysis may also apply
to non-Brownian noise provided the appropriate interpretation is
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used (e.g., the Marcus interpretation). That is, as long as standard
rules of integral calculus are valid.

Start by loading the procedure.

177 in_tex "../stoNormForm.tex"$

Set some variables for simplicity.

178 let rho*x0=>1-rho*kappa; % define rho=1/(x0+kappa)

179 kappa:=1; lam:=1/2; % set for simplicity

Execute the construction of a normal form for the system.

180 factor epsilon;

181 stonormalform(

182 { epsilon*rho*( -x0-x(1)

183 +(x0+x(1)+kappa-lam)*(x0*rho+y(1)) )

184 +w(1) },

185 { -y(1)+rho*( -x(1)*y(1)+x0+x(1)

186 -(x0+x(1)+kappa)*x0*rho )

187 +w(2) },

188 {},

189 3 )$

190 end;

The procedure reports that it analyses the following family

ẋ1 = ϵε
(
x1y1ρ− x1ρ

2 − 1/2y1ρ+ y1 + 1/2ρ2 − 1/2ρ
)
+ σw1

ẏ1 = σw2 + ε
(
− x1y1ρ+ x1ρ

2
)
− y1

Time dependent coordinate transform The algorithm con-
structs a coordinate transform to variables (X1, Y1), including terms
quadratic in σ, that to errors O

(
σ2, ε2

)
, is the following. The coor-

dinate transform depends upon both the past and the future via
convolutions e−1t⋆ and et⋆ , respectively. The following expressions
are complicated because stochastic effects interact through nonlin-
earity in a combinatorial explosion of ways. We almost certainly do
not need all these terms. I subsequently explain why the blue terms
are the ones describing the emergent stochastic slow manifold and
the evolution thereon. Further, remember that the dominant terms
are towards the end of each expression.

y1 = σε
(
− e−1t⋆e−1t⋆w2 X1ρ− e−1t⋆w1 ρ

2
)
+ σe−1t⋆w2 +

εX1ρ
2 + Y1

x1 = ϵσε
(
− e−1t⋆w2X1ρ+ 1/2e−1t⋆w2 ρ− e−1t⋆w2 −

et⋆w1 Y1ρ
)
+ ϵε

(
−X1Y1ρ+ 1/2Y1ρ− Y1

)
+X1

These new coordinates (X1, Y1) are non-Markovian in relation
to (x1, y1), in some sense, but the non-Markovian nature is ex-
ponentially decaying away from the current time. The construction
of a non-autonomous stochastic slow manifold has to look to the
future and the past in order to find out what variations are going
to stay bounded for all time.
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Result normal form DEs In the (X1, Y1) coordinates, the
stochastic system satisfies the following Stratonovich system, to
errors O

(
σ3, ε3

)
.

Y ′
1 = ϵσ2ε2

(
e−1t⋆e−1t⋆w2 w1Y1ρ

2 + 2e−1t⋆w2w1Y1ρ
2
)
+

ϵσε2
(
2w2X1Y1ρ

2 − w2Y1ρ
2 + 2w2Y1ρ− w1Y1ρ

3
)
+ ϵε2

(
−

X1Y1ρ
3 + 1/2Y1ρ

3 − Y1ρ
2
)
− εX1Y1ρ− Y1

X ′
1 = 1/2ϵ2σε2w2ρ

2 + ϵσ2ε2
(
− e−1t⋆e−1t⋆w2 w1X1ρ

2 −
2e−1t⋆w2w1X1ρ

2 + 1/2e−1t⋆w2w1ρ
2 − e−1t⋆w2w1ρ−

e−1t⋆w1w1ρ
3
)
+ ϵσ2εe−1t⋆w2w1ρ+ ϵσε2

(
− w2X

2
1ρ

2 +
1/2w2X1ρ

2 − w2X1ρ− w1X1ρ
3 + 1/2w1ρ

3 − w1ρ
2
)
+

ϵσε
(
w2X1ρ− 1/2w2ρ+ w2

)
+ ϵε2

(
X2

1ρ
3 − 1/2X1ρ

3 +
X1ρ

2
)
+ ϵε

(
−X1ρ

2 + 1/2ρ2 − 1/2ρ
)
+ σw1

Discussion

• In the Y ′
1 sde, by construction, every term is ∝ Y1, and,

further, the leading term gives Y ′
1 ≈ −Y1. Hence, Y1 ≈

O
(
e−τ

)
= O

(
e−

∫
(x0+κ)dt

)
as time increases. Consequently,

by continuity, in some finite domain about (x0, y0), Y1 → 0,
a.s., to form the emergent stochastic slow manifold Y1 = 0.

• The local shape of the slow manifold is thus given by sub-
stituting Y1 = 0 into the expressions for (x1, y1). Thus the
slow manifold is locally parametrised by X1, ϵ, σ. Now the
variation in X1 is the Taylor series for the variation in x0
(as they are both describing the same slow manifold). So all
we need is to set X1 = 0 and look at the shape of the slow
manifold in terms of x0, ϵ, σ, that is, the blue terms.

– SettingX1 = Y1 = 0 gives y1 ≈ −σe−1t⋆w1 ρ
2+σe−1t⋆w2 ,

that is, since ρ = 1/(x+ κ) = 1/(x+ 1),

y = y0 + y1 ≈
x0

x0 + 1
− σe−1t⋆w1

(x+ 1)2
+ σe−1t⋆w2 .

Dominantly, the slow manifold jitters up/down in y due
to the recent history of noise w2, but also is affected
from the recent history of the noise w1 in x.

– Setting X1 = Y1 = 0 gives x1 ≈ ϵσε
(
1/2e−1t⋆w2 ρ −

e−1t⋆w2

)
, that is,

x = x0 + x1 ≈ x0 − ϵσ
2x0 + 1

2(x0 + 1)
e−1t⋆w2 .

The noise w2 in y generates a history dependent slip
between x and the relevant x0!

This slip may be seen to be due to the slope of isochrons
transversal to the slow manifold—a slope not detected
in Singular Perturbation Analysis.
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This stochastic-MM example also shows the general property
that although the existence of a slow manifold has future
dependence, here via et⋆ convolutions, the slow manifold itself
and the evolution thereon depends only upon the history, here
via e−1t⋆ convolutions.

• Now for the x-evolution on the stochastic slow manifold.
Consider X(t) = x0 + x1(t), so that X ′ = x′1. Recall that
on the slow manifold, Y1 = 0 and x ≈ x0 − ϵσ 2x+1

2(x+1)e
−1t⋆w2 ,

X1 = 0, so also putting X1 = 0 and x0 = X give the evolution
for the slow variable X, namely the global slow evolution is

X ′ ≈ −ϵ
X

2(X + 1)2
+ ϵ2

X(2X + 1)

4(X + 1)5
+ σw1 + ϵσ

2X + 1

2(X + 1)
w2 .

The stochastic slow variable X is not quite the same as the
physical x. This coordinate transform lacks any convolutions
in time. That lack is part of the art of the construction.

If, instead, one wants the slow variable to be precisely x, as
many implicitly assume they can, then convolutions must
occur in x′). We may see this by constructing a nonlinear
coordinate transform that maintains, when Y1 = 0, that
x = x0, precisely. It is straightforward to modify the algorithm
to do so. The generic consequence is that terms linear in the
noise appear in the evolution x′ that have fast-time history
convolutions. That is, the consequence is that undesirable fast-
time history integrals occur in the evolution of the supposedly
slow variable x.

Noise-noise interactions However, effects which are quadratic
in the noise, due to noise-noise interactions, generally involve
convolutions that cannot be removed from the evolution of
the slow variable, as seen in expressions for X ′

1. Here, the
lowest order example is the term

+ϵσ2e−1t⋆w2w1/(x+ 1)

which could be included in the retained terms of X ′
1. We

argued (Chao & Roberts 1996, §4) that such terms ‘bring
up’ new information from the fluctuations on the fast-time
microscale, and hence cause noise effects in the slow model
that are independent of slow-scale sampling of w1 and w2.
We argued that such terms, when one only samples them on
the long-times of the slow manifold, should thus be replaced
by a new noise, namely e−βt⋆w2w1 ∼ 1

2
√
β
w3 when all wj are

formally ‘the derivatives’ of independent Wiener processes.

The above results are for one example of a stochastic MM system.
Almost all other stochastic MM systems would have the same issues.
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13 heatXchanger: Local analysis of heat exchanger

Roberts (2015a) provides novel theoretical support for the method
of multiple scales in spatio-temporal systems, and then extends
this important method. Perhaps the simplest example is the heat
exchanger: the non-autonomous slow manifold analysis that is at
the heart of the novel methodology is determined here. An internal
technical report3 considered the scenario where hot fluid enters one
pipe from the right having temperature field a(x, t), and cold fluid
enters the other pipe from the left with temperature field b(x, t).
Non-dimensional governing pdes are

∂a

∂t
= +

∂a

∂x
+ 1

2(b− a),
∂b

∂t
= − ∂b

∂x
+ 1

2(a− b).

Transform to mean and difference fields:

c(x, t) := 1
2(a+b), d(x, t) := 1

2(a−b), i.e., a = c+d, b = c−d.

The mean and difference of the pdes gives the equivalent pde
system

∂c

∂t
=

∂d

∂x
,

∂d

∂t
= −d+

∂c

∂x
.

In this form we readily see that the difference field d tends to decay
exponentially quickly, but that interaction between gradients of the
mean and difference fields generates other effects.

The approach is to expand the fields in their local spatial structure
based around a station x = X. Expand advection-exchange in a
heat exchanger in powers of (x−X)n/n!.

c(x, t) = c0(X, t) + c1(X, t)(x−X) + c2(X, t)12(x−X)2

+ c3(X, t)16(x−X)3 + c4(X,x, t) 1
24(x−X)4,

d(x, t) = d0(X, t) + d1(X, t)(x−X) + d2(X, t)12(x−X)2

+ d3(X, t)16(x−X)3 + d4(X,x, t) 1
24(x−X)4,

With Taylor Remainder Theorem closing the problem in terms
of unknown functions which here are represented by the non-
autonomous forcing wi. Variables y(j) = dj−1 and x(j) = cj−1.
Also w(1) = d4Xηx and w(2) = c4Xξx and evaluate at intensity
σ = 5 .

Start by loading the procedure.

191 in_tex "../stoNormForm.tex"$

Execute the construction of a normal form for the system.

192 stonormalform(

193 {y2,y3,y4,y5,w(1)},

3AJR (2012), Derive boundary conditions for heat exchanger modelling using
near boundary dynamics, dbefhem.pdf
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194 {-y1+x2

195 ,-y2+x3

196 ,-y3+x4

197 ,-y4+x5

198 ,-y5+w(2)},

199 { },

200 99 );

201 %end; % optional finish here

Here, since the results are exact, we can notionally carry out analysis
to high-order, here coded 99th order. Alternatively, as in the next
section, one could divide by small all the y(j) terms in the x(i)

equations, and all the x(i) terms in the y(j) equations to analyse
the original system without the algorithm’s artifice of small/ε.

Specified dynamical system The above embeds the odes as
the following.

ẋ1 = εy2

ẋ2 = εy3

ẋ3 = εy4

ẋ4 = εy5

ẋ5 = σw1

ẏ1 = εx2 − y1

ẏ2 = εx3 − y2

ẏ3 = εx4 − y3

ẏ4 = εx5 − y4

ẏ5 = σw2 − y5

Time dependent coordinate transform

y1 = σε4
(
e−1t⋆e−1t⋆e−1t⋆w2 + 2e−1t⋆e−1t⋆w2 + 3e−1t⋆w2

)
−

ε3X4 + εX2 + Y1
y2 = σε3

(
e−1t⋆e−1t⋆w1 + 2e−1t⋆w1

)
− ε3X5 + εX3 + Y2

y3 = σε2
(
− e−1t⋆e−1t⋆w2 − e−1t⋆w2

)
+ εX4 + Y3

y4 = −σεe−1t⋆w1 + εX5 + Y4

y5 = σe−1t⋆w2 + Y5

x1 = σε4
(
− e−1t⋆e−1t⋆w1 − 3e−1t⋆w1

)
+ ε3Y4 − εY2 +X1

x2 = σε3
(
e−1t⋆e−1t⋆w2 + 2e−1t⋆w2

)
+ ε3Y5 − εY3 +X2

x3 = σε2e−1t⋆w1 − εY4 +X3

x4 = −σεe−1t⋆w2 − εY5 +X4

x5 = X5

Result normal form DEs

Ẏ1 = ε4Y5 − ε2Y3 − Y1
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Ẏ2 = −ε2Y4 − Y2

Ẏ3 = −ε2Y5 − Y3

Ẏ4 = −Y4

Ẏ5 = −Y5

Ẋ1 = 3σε4w1 − ε4X5 + ε2X3

Ẋ2 = −2σε3w2 + ε2X4

Ẋ3 = −σε2w1 + ε2X5

Ẋ4 = σεw2

Ẋ5 = σw1

Clearly, the emergent slow manifold is Y⃗ = 0. Then the slow
evolution of X⃗ leads to the emergent dynamics being described by

∂c

∂t
≈ ∂2c

∂x2
− ∂4c

∂x4
+ 3σw1 .

13.1 Near the boundary

This is for the case of boundary conditions c+ pd = cd0(t) at x = 0
for some parameter p. Computer algebra finds boundary conditions
on the fields that reduce the dynamics near the boundary to the
following with x(1) = c1, x(2) = c3, y(1) = d0, y(2) = d2 and
w(1) = d3Xηx with σ = 4. Curiously, there is no dependence upon
parameter p in these dynamics.

The procedure stonormalform is already loaded. Write a message
saying we are now analysing the next system.

202 write "**** Near the boundary ****";

Execute the construction of a normal form for this system

203 stonormalform(

204 {y(2)/small,w(1)},

205 {-y(1)+x(1)/small,-y(2)+x(2)/small},

206 { },

207 99 );

208 %end; % optional finish here

Again, the following results are exact.

Specified dynamical system

ẋ1 = y2

ẋ2 = σw1

ẏ1 = x1 − y1

ẏ2 = x2 − y2

Tony Roberts, May 30, 2023



13 heatXchanger: Local analysis of heat exchanger 35

Time dependent coordinate transform

y1 = σ
(
e−1t⋆e−1t⋆w1 + 2e−1t⋆w1

)
−X2 +X1 + Y1

y2 = −σe−1t⋆w1 +X2 + Y2

x1 = σe−1t⋆w1 +X1 − Y2

x2 = X2

Result normal form DEs

Ẏ1 = −Y2 − Y1

Ẏ2 = −Y2

Ẋ1 = −σw1 +X2

Ẋ2 = σw1

13.2 Heat exchanger with quadratic reaction

Expand advection-reaction-exchange in a heat exchanger in powers
of (x−X)n/n!. The reaction is some quadratic that should generate
Burgers’ equation model. With Taylor Remainder Theorem closing
the problem in terms of unknown functions which here are repre-
sented by the non-autonomous forcing wi. Note that y(j) = dj−1

and x(j) = cj−1. Also w(1) = 3d2x and w(2) = 3c2x and evaluate
at intensity σ = 1 .

The procedure stonormalform is already loaded. Write a message
saying we are now analysing the next system.

209 write "**** with quadratic reaction ****";

Execute the construction of a normal form for this system, but this
time just choose the slow centre manifold.

210 stonormalform(

211 { y(2)-x(1)*y(1),

212 y(3)-x(1)*y(2)-x(2)*y(1),

213 small*w(1)-x(1)*y(3)-2*x(2)*y(2)-x(3)*y(1) },

214 { -y(1)+x(2)-(x(1)^2+y(1)^2)/2,

215 -y(2)+x(3)-x(1)*x(2)-y(1)*y(2),

216 -y(3)+small*w(2)-x(2)^2-x(1)*x(3)-y(2)^2-y(1)*y(3) },

217 { },

218 3 , cman);

219 end;

We could divide the off-diagonal linear terms by small (and remove
the multiplication of forcing w), and the algorithm still converges,
albeit in more iterations. The resulting asymptotic expressions then
do not assume that x derivatives are ‘successively smaller’. 4 The
following uses the default scaling which corresponds to successively
smaller x-derivatives provided I also multiply the forcing by small.

4 See result in file sdeheqr.pdf
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Specified dynamical system

ẋ1 = ε
(
− x1y1 + y2

)
ẋ2 = ε

(
− x2y1 − x1y2 + y3

)
ẋ3 = σεw1 + ε

(
− x3y1 − 2x2y2 − x1y3

)
ẏ1 = ε

(
x2 − 1/2x21 − 1/2y21

)
− y1

ẏ2 = ε
(
x3 − x2x1 − y2y1

)
− y2

ẏ3 = σεw2 + ε
(
− x3x1 − x22 − y3y1 − y22

)
− y3

Time dependent coordinate transform

y1 = ε
(
X2 − 1/2X2

1

)
y2 = ε

(
X3 −X2X1

)
y3 = σεe−1t⋆w2 + ε

(
−X3X1 −X2

2

)
x1 = X1

x2 = X2

x3 = X3

Result normal form DEs

Ẋ1 = ε2
(
X3 − 2X2X1 + 1/2X3

1

)
Ẋ2 = σε2w2 + ε2

(
− 2X3X1 − 2X2

2 + 3/2X2X
2
1

)
Ẋ3 = −σε2w2X1 + σεw1 + ε2

(
− 3X3X2 + 3/2X3X

2
1 + 3X2

2X1

)
Hmmm, looks like this generates the slowly varying model that

∂C

∂t
≈ ∂2C

∂x2
− 2C

∂C

∂x
+ 1

2C
3.

Interestingly there is an extra factor of two in the nonlinear advec-
tion, and a net cubic reaction.

References

Chao, X. & Roberts, A. J. (1996), ‘On the low-dimensional mod-
elling of Stratonovich stochastic differential equations’, Physica A
225, 62–80.

Fateman, R. (2003), ‘Comparing the speed of programs for sparse
polynomial multiplication’, ACM SIGSAM Bulletin 37(1), 4–15.
http://www.cs.berkeley.edu/~fateman/papers/fastmult.

pdf

Majda, A., Timofeyev, I. & Vanden-Eijnden, E. (2002), ‘A priori
tests of a stochastic mode reduction strategy’, Physica D 170, 206–
252.

Monahan, A. H. & Culina, J. (2011), ‘Stochastic averaging of
idealized climate models’, Journal of Climate 24(12), 3068–3088.

Tony Roberts, May 30, 2023



References 37

Pavliotis, G. A. & Stuart, A. M. (2008), Multiscale methods: averag-
ing and homogenization, Vol. 53 of Texts in Applied Mathematics,
Springer.

Potzsche, C. & Rasmussen, M. (2006), ‘Taylor approximation of in-
tegral manifolds’, Journal of Dynamics and Differential Equations
18, 427–460.

Roberts, A. J. (2008), ‘Normal form transforms separate slow and
fast modes in stochastic dynamical systems’, Physica A 387, 12–
38.

Roberts, A. J. (2015a), ‘Macroscale, slowly varying, models emerge
from the microscale dynamics in long thin domains’, IMA Journal
of Applied Mathematics 80(5), 1492–1518.

Roberts, A. J. (2015b), Model emergent dynamics in complex sys-
tems, SIAM, Philadelphia.
http://bookstore.siam.org/mm20/

Sun, X., Kan, X. & Duan, J. (2011), Approximation of invariant
foliations for stochastic dynamical systems, Technical report,
Illinois Institute of Technology.

Tony Roberts, May 30, 2023


	ratodes: Simple rational ODEs
	futureNoise: Future noise in the transform
	othersFail: Other methodologies fail
	Focus on the slow manifold

	offdiagonal: Levy area contraction: off-diagonal example
	jordanForm: the Jordan form of position-momentum variables
	slowOsc: Radek's slow oscillation with fast noise
	linearHyper: simple linear hyperbolic noisy system
	foliateHyper: Duan's hyperbolic system for foliation
	monahanFive: Monahan's five examples
	Example four: `three' time scales
	Example one: simple rational nonlinear
	Example three: several fast stable modes
	Example two: irregular slow manifold
	Idealised Stommel-like model of meridional overturning circulation

	majdaTriad: Majda's two triad models
	Multiplicative triad model
	Additive triad model

	nonautoTwo: Potzsche and Rasmussen non-autonomous examples
	Lorenz near the pitchfork bifurcation
	Fluctuating kdV example

	noisyMMH: noisy Michaelis–Menten–Henri chemical kinetics
	heatXchanger: Local analysis of heat exchanger
	Near the boundary
	Heat exchanger with quadratic reaction


