Computer algebra derives invariant manifolds and/or
normal forms of general stochastic or
non-autonomous multiscale differential equations

A. J. Roberts*

November 19, 2008; modified May 30, 2023

Abstract

Provides a coded procedure to construct invariant manifolds or a
normal form of a wide class of systems of non-autonomous or stochastic
differential equations (herein abbreviated by s/0DEs). The methodology
is based upon earlier research (Cox & Roberts 1991, Chao & Roberts
1996, Roberts 2008). Interpret all S/ODEs in the Stratonovich sense
so the analysis applies to deterministic differential equations, both
non-autonomous and autonomous. Cater for deterministic autonomous
systems by simply omitting the ‘noise’. For generality, this coded
procedure now caters for unstable modes, and for differential equation
systems with a rational right-hand side. This code also underlies an
interactive web service (Roberts 2009-2023). Modelling stochastic
systems has many important applications. The constructed stochastic
coordinate transforms and associated invariant manifolds are a powerful
way of disentangling emergent long term dynamics.

Contents

1 Introduction 2

*School of Mathematical Sciences, University of Adelaide, South Australia 5005, Aus-
TRALIA. https://profajroberts.github.io/

https://profajroberts.github.io/

1 Introduction

1.1 A simple example: examplenormform()

2 Header of the procedure
2.1 Preamble to the procedure
2.2 Extract and scale slow equations
2.3 Extract and scale stable fast equations
2.4 Extract and scale unstable fast equations

3 Setup LaTeX output using rlfi

4 Delayed write of text info

5 Represent the noise

6 Operators to solve noisy homological equation
7 Initialise approximate transform

8 Iterative updates
8.1 Faststablemodes.
8.2 Fast unstablemodes
83 Slowmodes

9 OQOutput results
9.1 Plaintext version
9.2 KIEX version v v v i vt

10 Fin

11 Override some rlfi procedures

1 Introduction

15

19

19

21

23

24
25
25
26

27
28
28

31

31

Installation Download and install the computer algebra package Re-
duce via http://www.reduce-algebra.com Download and unzip the
folder https://profajroberts.github.io/StoNormForm.zip Within

Tony Roberts, May 30, 2023

http://www.reduce-algebra.com
https://profajroberts.github.io/StoNormForm.zip

1 Introduction 3

the folder StoNormForm, start-up Reduce and load the procedure by ex-
ecuting the command in_tex "stoNormForm.tex"$ ' Test your installation
by then executing examplenormform(csuman); (see Section 1.1).

Execution Thereafter, construct a specified invariant manifold /normal
form of a specific dynamical system by executing the following command
with specific values for the input parameters. See manyExamples.pdf for
many and varied examples.

1 stonormalform(dxdt, dydt, dzdt, toosmall, theman);

Inputs Write your S/ODE system in terms of slow variables x;(¢), fast stable
variables y;(t) (linearly decaying), and fast unstable variables z;(t) (linearly
growing). For an s/ODE with n, slow modes, n, fast stable modes, and/or
n, fast unstable modes, you must denote the slow modes by x(1) through
to x(nx) (or aliases x1,...), the stable fast modes by y(1) through to y(ny)
(or aliases y1,...), and the unstable fast modes by z(1) through to z(nz)
(or aliases z1,...). Each non-autonomous factor must be denoted by w(.)
where the dot denotes almost any label you care to choose: simple numbers
such as w(1) and/or w(2) are the usual choices (no aliases); but other labels
may be used. Often w(.) is a Stratonovich white noise, a derivative of a
Stratonovich Wiener process. Analyse deterministic, autonomous, systems by
omitting any noise term w() in the differential equations. The s/ODEs must
be linearly diagonalised. > Then, as in the example of the next Section 1.1,
the input parameters to the procedure are the following;:

e dxdt, a comma separated list within braces, {...}, of the right-hand
sides of the S/ODEs for the slow variables z;(t) (the list may be
empty {});

e dydt, a comma separated list within braces, {...}, of the right-hand
sides of the S/ODEs for the fast stable variables y;(t) (the list may be

'This script changes many internal settings of Reduce, so best to do only when needed.
2Although a Jordan form is also acceptable, there are issues in the error control. Also,
‘small’ off-diagonal terms are allowed.

Tony Roberts, May 30, 2023

1

Introduction 4

empty {});

e dzdt, a comma separated list within braces, {...}, of the right-hand

sides of the s/ODEs for the fast unstable variables z;(t) (the list may
be empty {});

toosmall, an integer giving the desired order of error in the asymptotic
approximation that is constructed. The procedure embeds the specified
system in a family of systems parametrised by e, and constructs an
invariant manifold/normal form, and evolution thereon, of the embed-
ding system to the asymptotic error (’)(5““’“311) (as € — 0). Often the
introduced artificial € has a useful physical meaning, but strictly you
should evaluate the output at € = 1 to recover results for the specified
system, and then reinterpret the results, and errors, in terms of your
systems actual ‘small’ parameters.

The code also truncates to errors 0(03) where o characterises the
magnitude of the non-autonomous/stochastic effects w(j).

theman, optional, one of the identifiers in the set {cman , sman , uman ,
csman , cuman , csuman} specifying which invariant manifold to con-
struct: respectively, centre (slow), stable, unstable, centre-stable,
centre-unstable, or a normal form coordinate transform of the entire
centre-stable-unstable space. If omitted, then the default is csuman.

The above right-hand side expressions for the time-derivatives must be
multinomial in variables z;, y;, z; and w;. To cater for rational function
right-hand sides, one also may include some &;, ¥;, and z; factors.

Outputs This procedure reports the embedded system it actually analyses,

the number of iterations taken, the constructed time dependent coordinate
transform (the original variables (Z,¥,2) as a function of the new vari-
ables ()Z Y. Z)), and the corresponding evolution in the new variables in
terms of $/0DEs for (X,Y, Z).

e A plain report to the Terminal window in which Reduce is executing.

e A IATEX source report written to the file stoNFreport.tex (with

Tony Roberts, May 30, 2023

1 Introduction 5

stoNFreportHdr.tex and stoNFreportSys.tex). Generate a pdf ver-
sion by executing pdflatex stoNFreport.

e Global arrays such that x_(i), y_(j), and z_(k), respectively, are the
normal form coordinate transforms or invariant manifold coordinates
xi(f,?,z, 0,€), yj()?,?, Z, o,¢), and zk()z,?, Z, 0,¢). Depending
upon the requested invariant manifold, the dependence upon appropri-
ate ones of X, }7, or Z does not exist.

e Global arrays ££(1), gg(j), and hh(k) give the corresponding evo-
lution X; = ££(4), Y = gg(j), and Zy = hh(j) —all as functions
of (X , Y, Z ,0,€), or a subset thereof as appropriate for the specified
invariant manifold.

One may change the appearance of the output somewhat. For example, in
order to group terms in output expressions, execute a factor command
before executing the procedure stonormalform(...).

Background The theoretical support for the results of the analysis of
this procedure is centre/stable/unstable manifold theory (e.g., Carr 1981,
Knobloch & Aulbach 1982, Haragus & Iooss 2011, Roberts 2015), and an
embryonic backwards theory (Roberts 2019). This particular procedure is
developed from that for human-efficient computer algebra (Roberts 1997),
and extended to stochastic/non-autonomous systems (Chao & Roberts 1996,
Roberts 2008).

We use the computer algebra package Reduce |[http://reduce-algebra.
com/| because it is both free and perhaps the fastest general purpose computer
algebra system (Fateman 2003, e.g.).

1.1 A simple example: examplenormform()

Execute this example by invoking the command examplenormform(csuman) ;
The classically basic non-trivial system of fast/slow s/ODEs (Roberts 2015,
§19.1) is

i=—xy and §=—y+2®— 2>+ ow(t),

Tony Roberts, May 30, 2023

http://reduce-algebra.com/
http://reduce-algebra.com/

1 Introduction 6

where lowercase w(t), called a noise within this document, often denotes the
formal derivative dW/dt of a Stratonovich Wiener process W (t,w). Alter-
natively, w(t) represents an arbitrary deterministic time-dependent forcing,
or some control, or some ‘coloured’ random process, or some other extrinsic
input to the system. Parameter o controls the strength of the so-called noise.

Use slow variable x(1) to denote z(t), stable variable y(1) to denote y(t),
there is no unstable variable in this S/ODE, and use w(1) to denote the
(Stratonovich) noise w. Hence this system is analysed for ‘small’ (x,y, o) by
executing the following defined procedure examplenormform():

2 procedure examplenormform(theman);
3 stonormalform(

4 {-x1*y1},

5 {-y1+x172-2xy1"2+w (1)},

6 {3,

7 3, theman)$

The procedure stonormalform automatically multiplies the noise factors
by a parameter sigma so there is no need include the parameter ¢ in the
specification of the problem—it will be done for you.

Further, the procedure uses the parameter small, often denoted by ¢, to
control truncation in nonlinearity. The fourth parameter in the above specifies
to construct the normal form to errors (9(53).

Consequently, the procedure embeds the given system as the ¢ = 1 version
of the following system that it actually analyses:

1 = —ex1y1 and 9 = ow; + 5(3”% - 2y%) —hn

using analysis and theory based upon the subspace of equilibria y; = ¢ =
o = 0. The constructed coordinate transform and corresponding S/ODEs are
the following.

Tony Roberts, May 30, 2023

1 Introduction 7

The stochastic coordinate transform (to one order lower in both e
and o than actually constructed)

z1 = oee twwy X1 +eX1Y1 + X1 + 0(62,0'2)
y1 = doee Mww, Yy + o rwy + 5(X12 + 2Y12) +Y + 0(52, 02)

Result normal form SDEs
X, = 2022 xwy uy X — oceuwn X — £2X:13 + 0(63, 03)
Yl = 80’252e_1t*w1 w1Y1 — dosw1 Y] — 252X12Y1 -Y + 0(53, 03)

e Since this construction is based upon the subspace of equilibria y; = ¢ =
o = 0, these constructed expressions are asymptotic as (Y1,e,0) — 0.
However, evaluation at ¢ = 1 typically means that the expressions
should be reinterpreted as asymptotic as (Y7, X1,0) — 0.

Alternatively, since e multiplies only quadratic terms, then one
could view it as counting the order of nonlinearity in the new vari-
ables (X1,Y1). For example, the errors O(e®) are equivalent to er-
rors O(|(X1,Y1,0)|!). Parameter o arises in this error because the
term ow; drives effects of size o in y.

e The V; s/ODE shows that Y7 = 0 is exactly invariant, and since
dominantly is Y7 ~ —Y7, then Y; = 0 is almost always exponentially
quickly attractive (emergent) in some domain about the origin.

e The X; S/ODE is independent of ¥; and here indicates an algebraic
attraction to zero, albeit affected by a multiplicative noise, and moder-
ated by some irreducible noise-noise interactions. The independence
of Y7 implies that the X; s /ODE precisely predicts the system dynamics
from its initial value over all time.

e These deductions are transformed into the original xy-space by the
constructed time-dependent coordinate transformation.

e Backwards theory (Roberts 2019) would assert that the X;Y7j-system
and the coordinate transform, put together, defines a system in the
original xy-space, a system that is close to the original specified S/ODEs.

Tony Roberts, May 30, 2023

2 Header of the procedure 8

2 Header of the procedure

Need a couple of things established before defining the procedure: the r1fi
package for a nicer version of the output via ATEX; and operator names for
the variables of the S/ODEs.

8 load_package rlfi;
9 operator Xx;
10 operator y;
11 operator z;
12 operator w;

Cater for rational function S/ODEs by allowing time dependence in these
variables at specification. For rational function $/ODEs, users must multiply
each s/ODE by a common denominator, and put on the right-hand side the
nonlinear terms involving the time derivative.

13 depend x,t;
14 depend y,t;
15 depend z,t;

Clear the identifiers used to specify the invariant manifold/normal form.
16 clear cman,sman,uman,csman,cuman,csuman;

Now define the procedure as an operator so we can define procedures inter-
nally, and may be flexible with its arguments.

17 operator stonormalform;
18 for all dxdt, dydt, dzdt, toosmall let

19 stonormalform(dxdt, dydt, dzdt, toosmall)

20 = stonormalform(dxdt, dydt, dzdt, toosmall, csuman);
21 for all dxdt, dydt, dzdt, toosmall, theman let

22 stonormalform(dxdt, dydt, dzdt, toosmall, theman)
23 = begin

Tony Roberts, May 30, 2023

2 Header of the procedure 9

2.1 Preamble to the procedure

Operators and arrays are always global, but we can make variables and
matrices local, except for matrices that need to be declared matrix. So,
move to implement all arrays and operators to have underscores, and almost
all scalars and most matrices to be declared local here (for some reason
x/y/zrhs must be global).

24 scalar maxiter, trace, nx, ny, nz, offdiag, jac, ok, res,
25 resO, resl, lengthresx, lengthresy, lengthresz, cmanf,
26 smanf, umanf, textask;

Determine the text of the task.

27 textask:=if theman=cman then "centre manifold" else

28 if theman=sman then "stable manifold" else

29 if theman=uman then "unstable manifold" else

30 if theman=csman then "centre-stable manifold" else
31 if theman=cuman then "centre-unstable manifold" else
32 if theman=csuman then "normal form" else

33 rederr "cannot recognise the manifold to construct"$

Set corresponding flags to be 1 or 0 depending upon whether that component
of the dynamics is to be in the manifold.

34 procedure inlist(a,b)$ if member(a,b) then 1 else 0%

35 cmanf := inlist(theman,{cman,csman,cuman,csuman})$
36 smanf := inlist(theman,{sman,csman,csuman})$
37 umanf := inlist(theman,{uman,cuman,csuman})$

Write an intro message.

38 write "Construct a stochastic ",textask
39 ," (version 30 May 2023)"$

Parameter maxiter is the maximum number of allowed iterations; this default
may be changed.

40 maxiter:=32%

Tony Roberts, May 30, 2023

2 Header of the procedure 10

In the printed expressions, by default, factor small (¢) and sigma (o).
41 %factor small,sigma;

The code cannot handle any cubic or higher order in noise amplitude sigma.
42 let sigma”3=>0;

For optional trace printing of test cases: comment out second line when not
needed.

43 trace:=0$
44 ftrace:=1; maxiter:=5;

The rationalize switch may make code much faster with complex numbers.
The switch gcd seems to wreck convergence, so leave it off.

45 on div; off allfac; on revpri;
46 on rationalize;

2.2 Extract and scale slow equations
The number of slow equations is the number of terms in the list in dxdt.

47 xrhs_:=dxdt$
48 write "no. of slow modes ",nx:=length(xrhs_);

Define aliases xi map to x(i), except one must use the x(i)-form within
any df (,t) on the right-hand side.

49 for i:=1:nx do set(mkid(x,i),x(i));

Multiply all the right-hand sides by small so we can control the truncation
of the asymptotic construction through discarding high powers of small.
Users could use small in their equations for appropriate effects.

50 xrhs_:=for i:=1:nx collect small*part(xrhs_,i)$

Adjust the noise terms. Remove the small multiplication of noise terms, and
instead multiply by sigma to empower independent control of the truncation
in noise amplitude.

Tony Roberts, May 30, 2023

2 Header of the procedure 11

51 xrhs_:=(xrhs_ where w("j)=>sigma*w(j,1)/small)$
52 xrhs_:=(xrhs_ where w("j,1)=>w(j))$

Section 4 writes the resulting differential equations for information.

53 if trace then for i:=1:nx do
54 write "dx(",i,")/dt = ",l*part(xrhs_,1i);

2.3 Extract and scale stable fast equations
The number of stable fast equations is the number of terms in the list in dydt.

55 yrhs_:=dydt$
56 write "no. of stable fast modes ",ny:=length(yrhs_);

Define aliases yi map to y(i), except one must use the y(i)-form within
any df (,t) on the right-hand side.

57 for i:=1:ny do set(mkid(y,i),y(i));

Extract decay rates Extract the linear decay rates of the fast equations
into an array. For each expression in the provided set of right-hand sides:

58 clear rats_; array rats_(ny);
59 for i:=1:ny do begin
For the ith right-hand side get the linear dependence upon y(i), then set

other dynamic variables to zero to get just the coeflicient.

60 rats_(i):=coeffn(part(yrhs_,i),y(i),1);
61 rats_(i):=(rats_(i) where
62 {x(7j)=>0,y(7j)=>0,z("j)=>0,w("j)=>0});

However, the coefficient may depend upon parameters, so if it is not simply
a number, but is a sum, then trawl through the sum looking for a simple
number to use as the decay rate.

63 if not numberp(rats_(i)) then
64 if part(rats_(i),0)=plus then begin

Tony Roberts, May 30, 2023

2 Header of the procedure 12

65 rr:=0;

66 for j:=1:arglength(rats_(i)) do
67 if numberp(part(rats_(i),j))
68 then rr:=part(rats_(i),j);

69 rats_(1i) :=rr;

70 end;

Change sign to make rats_ into positive decay rates, rather than negative
growth rates.

71 rats_(i):=-rats_(i);

If all the above has not ended up with a simple number, then exit with an
error message.

72 if numberp(rats_(i))and rats_(i)>0 then
73 else begin

74 write '"sokxkk Error skkkkxk

75 Linear coeffs of y-decay must be negative numbers";
76 return;

77 end;

End the loop over all right-hand sides.

78 end;
79 if trace then write "End loop over all dydt";

Flag later warning if the linear part not diagonal.

80 offdiag:=0$

81 for i:=1:ny do for j:=1:ny do if i neq j then begin

82 jac:=coeffn(part(yrhs_,i),y(j),1);

83 if (jac where {x("k)=>0,y("k)=>0,z("k)=>0,w("k)=>0}) neq O
84 then offdiag:=1%

85 end;

86 if trace then write offdiag:=offdiag;

Multiply all the ‘nonlinear’ terms right-hand sides by small so we control
the truncation of the asymptotic construction through discarding high pow-

Tony Roberts, May 30, 2023

2 Header of the procedure 13

ers of small. Leave the identified linear decay terms intact. Users could
use small in their equations for interesting effects.

87 yrhs_:=for i:=1:ny collect
88 smallxpart(yrhs_,i)+(1-small)*(-rats_(i)*y(i))$

Remove the small multiplication of noise terms, and instead multi-
ply by sigma to empower independent control of the truncation in
noise amplitude.

89 yrhs_:=(yrhs_ where w(~j)=>sigma*w(j,1)/small)$
90 yrhs_:=(yrhs_ where w(“j,1)=>w(j))$

Section 4 writes the resulting differential equations for information.

91 if trace then for i:=1:ny do
92 write "dy(",i,")/dt = ",l*xpart(yrhs_,1i);

2.4 Extract and scale unstable fast equations

The number of unstable fast equations is the number of terms in the list
in dzdt.

93 zrhs_:=dzdt$
94 write "no. of unstable fast modes ",nz:=length(zrhs_);

Define aliases zi map to z(i), except one must use the z(i)-form within
any df (,t) on the right-hand side.

95 for i:=1:nz do set(mkid(z,i),z(i));

Extract growth rates Extract the linear growth rates of the fast equations
into an array. For each expression in the provided set of right-hand sides:

96 clear ratu_; array ratu_(nz);
97 for i:=1:nz do begin

For the ith right-hand side get the linear dependence upon z(i), then set
other dynamic variables to zero to get just the coefficient.

Tony Roberts, May 30, 2023

2 Header of the procedure 14

98 ratu_(i) :=coeffn(part(zrhs_,i),z(i),1);
99 ratu_(i):=(ratu_(i) where
100 {x(7j)=>0,y(7j)=>0,z("j)=>0,w("j)=>0});

However, the coefficient may depend upon parameters, so if it is not simply
a number, but is a sum, then trawl through the sum looking for a simple
number to use as the growth rate.

101 if not numberp(ratu_(i)) then
102 if part(ratu_(i),0)=plus then begin

103 rr:=0;

104 for j:=1:arglength(ratu_(i)) do
105 if numberp(part(ratu_(i),j))
106 then rr:=part(ratu_(i),j);

107 ratu_(i) :=rr;

108 end;

If all the above has not ended up with a simple number, then exit with an
error message.

109 if numberp(ratu_(i))and ratu_(i)>0 then
110 else begin

111 write '"s¥kkkx Error kkkkx

112 Linear coeffs of z-growth must be positive numbers";
113 return;

114 end;

End the loop over all z-right-hand sides.

115 end;
116 if trace then write "End loop over all dzdt";

Flag warning if the linear part not diagonal.

117 for i:=1:nz do for j:=1:nz do if i neq j then begin

118 jac:=coeffn(part(zrhs_,i),z(j),1);

119 if (jac where {x("k)=>0,y("k)=>0,z("k)=>0,w("k)=>0}) neq O
120 then offdiag:=1%

121 end;

Tony Roberts, May 30, 2023

3 Setup LaTeX output using rlfi 15

122 if trace then write offdiag:=offdiag;

Multiply all the ‘nonlinear’ terms right-hand sides by small so we control the
truncation of the asymptotic construction through discarding high powers
of small. Leave the identified linear growth terms intact. Users could
use small in their equations for interesting effects.

123 zrhs_:=for i:=1:nz collect
124 small*part(zrhs_,i)+(1-small)*(+ratu_(i)*z(i))$

Remove the small multiplication of noise terms, and instead multiply
by sigma to empower me to independently control the truncation in noise
amplitude.

125 zrhs_:=(zrhs_ where w(”j)=>sigma*w(j,1)/small)$
126 zrhs_:=(zrhs_ where w(~j,1)=>w(j))$

Section 4 writes the resulting differential equations for information.

127 if trace then for i:=1:nz do
128 write "dz(",i,")/dt = ",1*part(zrhs_,1i);

3 Setup LaTeX output using rlfi

Use inline math environment so that long lines, the norm, get line breaks.
The command \raggedright in the ITEX preamble appears the best option
for the line breaking, but \sloppy would also work reasonably.

129 mathstyle math;

Define names for BTEX formatting Define some names I use, so that
rlfi translates them to Greek characters in the IATEX.

130 defid small,name="\eps";’varepsilon;
131 defid alpha,name=alpha;

132 defid beta,name=beta;

133 defid gamma,name=gamma;

134 defid delta,name=delta;

Tony Roberts, May 30, 2023

3 Setup LaTeX output using rlfi

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid
defid

epsilon,name=epsilon;
varepsilon,name=varepsilon;
zeta,name=zeta;
eta,name=eta;
theta,name=theta;
vartheta,name=vartheta;
iota,name=iota;
kappa,name=kappa;
lambda,name=1ambda;
mu , name=mu;
nu,name=nu;
xi,name=x1i;
pi,name=pi;
varpi,name=varpi;
rho,name=rho;
varrho,name=varrho;
sigma,name=sigma;
varsigma,name=varsigma;
tau,name=tau;
upsilon,name=upsilon;
phi,name=phi;
varphi,name=varphi;
chi,name=chi;
psi,name=psi;
omega,name=omega;
Gamma ,name=Gamma ;
Delta,name=Delta;
Theta,name=Theta;
Lambda,name=Lambda;
Xi,name=Xi;
Pi,name=Pi;
Sigma,name=Sigma;
Upsilon,name=Upsilon;
Phi,name=Phi;
Psi,name=Psi;

Tony Roberts

, May 30

16

, 2023

3 Setup LaTeX output using rlfi 17

170 defid Omega,name=Omega;

For the variables names I use, as operators, define how they appear in the
TEX, and also define that their arguments appear as subscripts.

171 defindex w(down) ;
172 defindex x(down) ;
173 defindex y(down) ;
174 defindex z(down);
175 defid xx,name="X";
176 defid yy,name="Y";
177 defid zz,name="7Z";
178 defindex xx(down);
179 defindex yy(down) ;
180 defindex zz(down) ;
181 defindex hh(down) ;
182 defindex gg(down);
183 defindex ff (down);

First use these for the specified dynamical system, later use them for the
normal form equations.

184 defid hh,name="\dot z";
185 defid gg,name="\dot y";
186 defid ff,name="\dot x";

The ‘Ornstein—Uhlenbeck’ operator is to translate into a IIEX command,
see the preamble, that typesets the convolution in a reasonable manner.
The definition of the IXTEX command is a bit dodgy as convolutions of
convolutions are not printed in the correct order; however, convolutions
commute so it does not matter.

187 defid ou,name="\ou";
188 defindex ou(arg,arg,arg);

Write the KTEX dynamical system Because of the way rfli works, to
get good quality output to the IATEX document, I need to write the algebraic

Tony Roberts, May 30, 2023

3 Setup LaTeX output using rlfi 18

expressions to a file, then read them back in again. While being read back in,
I send the output to the KTEX file. In this convoluted way I avoid extraneous
output lines polluting the INTEX.

Temporarily use these arrays for the right-hand sides of the dynamical system.

189 clear ff,gg,hh;
190 array ff(nx),gg(ny),hh(nz);

Write expressions to the file scratchfile.red for later reading. Prepend the
expressions with an instruction to write a heading, and surround the heading
with anti-math mode to cancel the math environment that rlfi puts in.

191 out "scratchfile.red"$

192 write "off echo;"$ 7% do not understand why needed in 202177
193 write "write ""\)

194 \paragraph{Specified dynamical system}

195 \(""$";

196 for i:=1:nx do write "ff(",i,"):=1*part(xrhs_,",i,");";

197 for i:=1:ny do write "gg(",i,"):=1xpart(yrhs_,",i,");";

198 for i:=1:nz do write "hh(",i,"):=1*part(zrhs_,",i,");";

199 write "end;";

200 shut "scratchfile.red";

Then switch on KTEX output before writing to file as this ATEX file is to be
input from the main ITEX file and hence does not need a header. The header
here gets sent to the ‘terminal’” instead. Then write to stoNFreportSys.tex
the expressions we stored in scratchfile.red as nice KTEX.

201 write "Ignore the following five lines of LaTeX"$
202 on latex$

203 out "stoNFreportSys.tex"$

204 in "scratchfile.red"$

205 shut "stoNFreportSys.tex"$

206 off latex$

Tony Roberts, May 30, 2023

4 Delayed write of text info 19

4 Delayed write of text info

Because it is messy to interleave INTEX and plain output, I delay writing
anything much in plain text until here.

Write the delayed warning message about off-diagonal terms.

207 if offdiag then write "

208 *x¥*k Warning kkk

209 Off diagonal linear terms in y—- or z- equations
210 assumed small. Answers are rubbish if not

211 asymptotically appropriate. "$

Write the plain text versions of the dynamical system.

212 write "no. of slow modes ",nx:=length(xrhs_);

213 for i:=1:nx do write "dx(",i,")/dt = ",lxpart(xrhs_,i);
214 write "no. of stable fast modes ",ny:=length(yrhs_);

215 for i:=1:ny do write "dy(",i,")/dt = ",1lxpart(yrhs_,i);
216 write "no. of unstable fast modes ",nz:=length(zrhs_);
217 for i:=1:nz do write "dz(",i,")/dt = ",lxpart(zrhs_,i);

5 Represent the noise

The ‘noises’ w depend upon time. But we find it useful to discriminate upon
the notionally fast time fluctuations of a noise process, and the notionally
ordinary time variations of the dynamic variables z;, 4;, and z;. Thus
introduce a notionally fast time variable tt, which depends upon the ordinary
time t. Equivalently, view tt, a sort of ‘partial ¢’, as representing variations
in time independent of those in the variables x;, y;, and z;.

218 depend w,tt;
219 depend tt,t,ttyz;

In the construction, convolutions of the noise arise, both backwards over
history and also forwards in time to anticipate the noise (Roberts 2008, 2019).

Tony Roberts, May 30, 2023

5 Represent the noise 20

For any non-zero parameter pu, define the ‘Ornstein—Uhlenbeck’ convolution

g — {fim explu(t — Té(r)dr, <0, 0

[explult = 7)o(r)dr, p>0,

so that the convolution is always with a bounded exponential. Five useful
properties of this convolution are

1

e,ut*]_ _ m , (2)
%em*cb = —sgnp ¢+ petxo, (3)
Ele'xg) = e"'+E[g], (4)
1
t 21—
Bl s = 50 ©)

1 ut vt
wit oty —) T [e *+ e *] , pr <0,
%[e“t*—e”t*] , w>0& pu#v.
Also remember that although with 1 < 0 the convolution e#!x integrates over
the past, with u > 0 the convolution e#'x integrates into the future—both
over a time scale of order 1/|u|.

The operator ou(f,tt,mu) represents the convolution et!x f as defined by (1):
called ou because it is an Ornstein—Uhlenbeck process when f is a stochastic
white noise. The operator ou is ‘linear’ over fast time tt as the convolution
only arises from solving PDEs in the operator 0; — . Code its derivative (3)
and its action upon autonomous terms (2):

220 clear ou; operator ou; linear ou;
221 let { df (ou("f,tt, mu),t)=>-sign(mu)*f+mu*rou(f,tt,mu)
222 , ou(l,tt, mu)=>1/abs (mu)

Also code the transform (6) that successive convolutions at different rates
may be transformed into several single convolutions.

223 , ou(ou("r,tt, " nu),tt, “mu) =>
224 (ou(r,tt,mu)+ou(r,tt,nu))/abs(mu—nu) when (mu*nu<0)

Tony Roberts, May 30, 2023

6 Operators to solve noisy homological equation 21

225 , ou(ou("r,tt, " nu),tt, mu) =>

226 -sign(mu)*(ou(r,tt,mu)-oulr,tt,nu))/(mu-nu)
227 when (mu*nu>0)and(mu neq nu)

228 };

The above properties are critical: they must be correct for the results to be
correct. Currently, they are only coded for real rates p, v.

Second, identify the resonant parts, some of which must go into the evolu-
tion gg(i), and some into the transform. It depends upon the exponent
of yz compared to the decay rate of this mode, here r.

229 clear reso_; operator reso_; linear reso_;

230 let { reso_("a,yz, r)=>1 when df (a,yz)*yz=r*a

231 , reso_("a,yz, r)=>0 when df (a,yz)*yz neq r*a
232 };

Lastly, the remaining terms get convolved at the appropriate rate to solve
their respective homological equation by the operator zres_.

233 depend yz,ttyz;

234 clear zres_; operator zres_; linear zres_;

235 let zres_("a,ttyz, r)=>ou(sign(df(a,yz)*yz/a-r)
236 xsub(yz=1,a),tt,df (a,yz) *yz/a-r);

6 Operators to solve noisy homological equation

When solving homological equations of the form F + £ = Res (the resonant
case 11 = 0), we separate the terms in the right-hand side Res into those that
are integrable in fast time, and hence modify the coordinate transform by
changing £, and those that are not, and hence must remain in the evolution
by changing F'. the operator zint_ extracts those parts of a term that we
know are integrable; the operator znon_ extracts those parts which are not
knowably bounded integrable. With more research, more types of terms may
be found to be integrable; hence what is extracted by zint_ and what is left
by zint_ may change with more research, or in different scenarios. These
transforms are not critical: changing the transforms may change intermediate

Tony Roberts, May 30, 2023

6 Operators to solve noisy homological equation 22

computations, but as long as the iteration converges, the computer algebra
results will be algebraically correct.

237 clear zint_; operator zint_; linear zint_;
238 clear znon_; operator znon_; linear znon_;

First, avoid obvious secularity.

239 let { zint_(w(~i),tt)=>0, znon_(w(~i),tt)=>w(i)
240 , zint_(1,tt)=>0, znon_(1,tt)=>1
241 , zint_(w(Ti)*"r,tt)=>0, znon_(w(~i)*"r,tt)=>w(i)*r

Second, by (3) a convolution may be split into an integrable part, and a part
in its argument which in turn may be integrable or not.

242 , zint_(ou("r,tt, mu),tt)
243 =>ou(r,tt,mu) /mu+zint_(r,tt)/abs(mu)
244 , znon_(ou("r,tt, mu),tt)=>znon_(r,tt)/abs(mu)

Third, squares of convolutions may be integrated by parts to an integrable
term and a part that may have integrable or non-integrable parts.

245 , zint_(ou("r,tt, mu) "2,tt)=>ou("r,tt, “mu) ~2/(2*mu)
246 +zint_(r*ou(r,tt,mu),tt)/abs (mu)
247 , znon_(ou("r,tt, mu) "2,tt)=>znon_(r*ou(r,tt,mu),tt)/abs(mu)

Fourth, different products of convolutions may be similarly separated using
integration by parts.

248 , zint_(ou("r,tt, mu)*ou("s,tt, “nu),tt)

249 =>ou(r,tt,mu)*ou(s,tt,nu)/ (mu+nu)

250 +zint_(sign(mu)*r*ou(s,tt,nu)+sign(nu)*s*oulr,tt,mu),tt)
251 /(mu+nu) when mu+nu neq O

252 , znon_(ou("r,tt, mu)*ou("s,tt, " nu),tt)=>

253 +znon_(sign(mu)*r*ou(s,tt,nu)+sign(nu) *s*oulr,tt,mu) ,tt)
254 / (mu+nu) when mu+nu neq 0

However, a zero divisor arises when p 4+ v = 0 in the above. Here code rules
to cater for such terms by increasing the depth of convolutions over past
history.

Tony Roberts, May 30, 2023

7 Initialise approximate transform 23

255 , zint_(ou("r,tt, "mu)*ou(~s,tt, “nu),tt)=>
256 ou(ou(r,tt,-nu),tt,-nu)*ou(s,tt,nu)

257 +zint_(ou(ou(r,tt,-nu) ,tt,-nu)*s,tt)
258 when (mu+nu=0)and(nu>0)

259 , znon_(ou("r,tt, mu)*ou("s,tt, "nu),tt)=>
260 znon_(ou(ou(r,tt,-nu),tt,-nu)*s,tt)

261 when (mu+nu=0)and(nu>0)

The above handles quadratic products of convolutions. Presumably, if we
seek cubic noise effects then we may need cubic products of convolutions.
However, I do not proceed so far and hence terminate the separation rules.

262 };

7 Initialise approximate transform

Truncate asymptotic approximation of the coordinate transform depending
upon the parameter toosmall. Use the ‘instant evaluation’ property of
a loop index to define the truncation so that Reduce omits small terms
on the fly.

263 for j:=toosmall:toosmall do let small”j=>0;

Variables x, y and z are operators in the specification of the equations. We
now want them to map to the approximation to the coordinate transform,
so point them to arrays storing the normal form expressions. Need to clear
the mapping to the array before exiting.

264 clear x_,y_,z_;
265 let { x(7j1)=>x_(3), y("j)=>y_(3), z(7j)=>z_(F) };
266 array x_(nx),y_(uy),z_(nz);

Express the normal form in terms of new evolving variables X;, Y;, and Z;,
denoted by operators xx (i), yy(i) and zz(i), which are nonlinear modi-
fications to x;, y; and z;. The expressions for the normal form S/ODEs are
stored in ff, gg and hh.

267 clear xx,yy,zzZ;

Tony Roberts, May 30, 2023

8 lterative updates 24

268 operator xx; operator yy; operator zz;
269 depend xx,t; depend yy,t; depend zz,t;
270 let { df (xx(~1i),t)=>ff(i)*cmanf

271 , df (yy(T1),t)=>gg (i) *smanf
272 , df (zz("i),t)=>hh(i)*umanf };
The first linear approximation is then x; ~ X;, y; = Y; and z; = Z;,

such that X; ~ 0, in ££(1), Y; ~ —r;Y;, in gg(i), and 7 ~ +riZ;
in hh(i). Depending upon the specified manifold, these are multiplied by
the appropriate 0-1 flags.

273 for i:=1:nx do x_(i):=xx(i)*cmanf;

274 for i:=1:ny do y_(i):=yy(i)*smanf;

275 for i:=1:nz do z_(i):=zz(i)*umanf;

276 for i:=1:nx do ff(i):=0;

277 for i:=1:ny do gg(i):=-rats_(i)*yy(i)*smanf;
278 for i:=1:nz do hh(i):=+ratu_(i)*zz(i)*umanf;

Consider updating the Y; evolution gg(i) and the y; transform. The residual
is of the form of a sum of terms [| j quj Z* € Res. So updates involve dividing
by, or convolving with, 8; — > i Big; + >k YeTk- First, form the substitutions
needed to introduce yz to count the number of variables Y; and Z; in any given
term, weighted according to their rate coefficient in the homological equation.

279 y4y:=for i:=1:ny collect yy(i)=yy(i)*yz-rats_(i)$
280 z4z:=for i:=1:nz collect zz(i)=zz(i)/yz ratu_(i)$
281 y4y:=append(y4y,z4z)$

8 Iterative updates

We iterate to a solution of the governing S/ODEs to residuals of some order
of error. The number of iterations are limited by a maximum.

282 for iter:=1:maxiter do begin

283 ok:=1;
284 if trace then write "
285 ITERATION = ",iter,"

Tony Roberts, May 30, 2023

8 lterative updates 25

8.1 Fast stable modes

Compute the residual of each of the y; s/ODEs, updating ok to track whether
all s/ODEs are satisfied. Keep track of the lengths of the residuals to indicate
progress in the iteration.

287 lengthresy:={};
288 for i:=1:ny do begin

289 res:=-df (y(i) ,t)+part(yrhs_,1i);

290 ok:=if res=0 then ok else O;

291 lengthresy:=append(lengthresy,{length(res)});
292 if trace then write '"resy",i," = ",res;

Within the loop: first insert the weighted count of Y and Z variables; then
split the residual into two parts of possibly resonant, resO and the rest, resi;
then allocate to the evolution or the transform.

293 res:=sub(y4y,res) ;

204 resO:=reso_(res,yz,+rats_(i));

295 resl:=res-resOxyz rats_(i);

296 if smanf then gg(i):=gg(i)+znon_(resO,tt)

297 else if znon_(resO,tt) neq O

298 then rederr("oops y-res: contact me");

299 if trace then write "dY",i,"/dt = ",gg(i);

300 y_(1i):=y_(i) +zint_(resO,tt) -zres_(resl,ttyz,rats_(i));
301 if trace then write "y",i," = ",y(i);

302 end;

303 if ny>0 then write lengthresy:=lengthresy;

8.2 Fast unstable modes

Compute the residual of each of the z; S/ODEs, updating ok to track whether
all s/ODEs are satisfied. Keep track of the lengths of the residuals to indicate
progress in the iteration.

Tony Roberts, May 30, 2023

8 lterative updates 26

304 lengthresz:={};
306 for i:=1:nz do begin

306 res:=-df (z(i),t)+part(zrhs_,i);

307 ok:=if res=0 then ok else O;

308 lengthresz:=append(lengthresz,{length(res)}) ;
309 if trace then write "resz",i," = ",res;

Update the Z; evolution hh(i) and the z; transform. Within the loop: first
insert the weighted count of Y and Z variables; then split the residual into
two parts of possibly resonant, res0, and the rest, res1; then allocate to the
evolution or the transform.

310 res:=sub(y4y,res);

311 resO:=reso_(res,yz,-ratu_(i));

312 resl:=res-resO/yz ratu_(i);

313 if umanf then hh(i) :=hh(i)+znon_(resO,tt)

314 else if znon_(resO,tt) neq O

315 then rederr("oops z-res: contact me");

316 z_(i):=z_(i) +zint_(resO,tt) -zres_(resl,ttyz,-ratu_(i));
317 end;

318 if nz>0 then write lengthresz:=lengthresz;

8.3 Slow modes

Compute the residual of each of the z s/ODEs, updating ok to track whether
all s/ODEs are satisfied. Keep track of the lengths of the residuals to indicate
progress in the iteration.

319 lengthresx:={};
320 for i:=1:nx do begin

321 res:=-df (x(i),t) +part(xrhs_,i);

322 ok:=if res=0 then ok else O;

323 lengthresx:=append(lengthresx,{length(res)});
324 if trace then write "resx",i," = ",res;

Update the X; evolution £f (i) and the z; transform. Use the same process
as for the fast variables; the difference is that here the mode rate is zero.

Tony Roberts, May 30, 2023

9 Output results 27

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

res:=sub(ydy,res);

resO:=reso_(res,yz,0);

resl:=res-res0;

if cmanf then ff(i):=ff(i)+znon_(resO,tt)

else if znon_(resO,tt) neq O then begin
write "**** Requested manifold may not exist due to";
write "slow x-residual component: res0=",resO;
write "**** So halving the max number of iterations";
maxiter:=maxiter/2;

end;

if trace then write "dX",i,"/dt = ",ff(i);

x_(i):=x_(1) +zint_(resO,tt) -zres_(resl,ttyz,0);

if trace then write "x",i," = ",x(i);

end;
if nx>0 then write lengthresx:=lengthresx;

Terminate the iteration loop once all residuals are zero, or the maximum
number of iterations has been done.

340
341
342

343 end;

showtime;
if ok then write "Number of iterations ",

iter:=1000000+iter;

9 Output results

Only proceed to print if terminated successfully.

344 if ok

345 then write "SUCCESS: converged to an expansion"
346 else <<write "FAILED TO CONVERGE; I EXIT";

347 return; >>;

Tony Roberts, May 30, 2023

9 Output results 28

9.1 Plain text version

Print the resultant coordinate transform: but only print to one lower power
in small and sigma in order to keep output relatively small.

348 write "Stochastic/non-autonomous ",textask," coordinates"$
349 write "(to one order lower in both small and sigma)"$
350 for i:=1:nz do if trace then write z_(i):=z_(1i)

351 else begin z_(i):=sigma*smallx*z_(1i);

352 write z_(i):=z_(i)/small/sigma; end;
353 for i:=1:ny do if trace then write y_(i):=y_(i)
354 else begin y_(i):=sigma*smallxy_(i);

355 write y_(i):=y_(i)/small/sigma; end;
356 for i:=1:nx do if trace then write x_(i):=x_(i)
357 else begin x_(i):=sigma*small*x_(1i);

358 write x_(i):=x_(i)/small/sigma; end;

Lastly print the normal form s/ODEs: first the fast, second the slow.

359 write "The ",textask," S/ODEs";

360 if umanf then for i:=1:nz do write "dzz(",i,")/dt = ",hh(i);
361 if smanf then for i:=1:ny do write "dyy(",i,")/dt = ",gg(i);
362 if cmanf then for i:=1:nx do write "dxx(",i,")/dt = ",ff(i);

9.2 RETEX version

Include order of error to make printing more robust. But we cannot use
small~toosmall in the following as that is set to zero (for the asymptotics),
so we hard code that small appears as varepsilon . Further, to avoid
sigma~3 being replaced by zero, introduce sigma_ that maps to o.

363 clear order_; operator order_;
364 defid order_,name="0";

365 defindex order_(arg,arg) ;

366 defid sigma_,name="\sigma";

As before, we have to write expressions to file for later reading so they get
printed without extraneous dross in the IATEX source. First open up the

Tony Roberts, May 30, 2023

9 Output results 29

temporary file scratchfile.red again.

367 out "scratchfile.red"$
368 write "off echo;"$ % do not understand why needed in 202177

Write the stochastic coordinate transform to file, with a heading, and with
an anti-math environment to cancel the auto-math of rlfi. For some reason
we have to keep these writes short as otherwise it generates spurious fatal
blank lines in the KTEX.

369 write "write ""\)

370 \paragraph{Time dependent ",textask," coordinates}
371 \(uu;u;

372 for i:=1:nz do write "z_(",i,"):=z_(",1i,

373 ") +order_(varepsilon”",toosmall-1,",sigma_"2);";
374 for i:=1:ny do write "y_(",i,"):=y_(",1i,
375 ") +order_(varepsilon”",toosmall-1,",sigma_"2);";
376 for i:=1:nx do write "x_(",i,"):=x_(",1i,
377 ") +order_(varepsilon”",toosmall-1,",sigma_"2);";

Write the resultant stochastic normal form to file, with a heading, and with
an anti-math environment to cancel the auto-math of rlfi.

378 write "write ""\)
379 \paragraph{Result ",textask," DEs}

380 \("";";

381 if umanf then for i:=1:nz do write "hh(",i,"):=hh(",i,
382 ") +order_(varepsilon~",toosmall,",sigma_"3);";
383 if smanf then for i:=1:ny do write "gg(",i,"):=gg(",1i,
384 ") +order_(varepsilon”",toosmall,",sigma_"3);";
385 if cmanf then for i:=1:nx do write "ff(",i,"):=ff(",i,
386 ") +order_(varepsilon”",toosmall,",sigma_"3);";

387 write "end;";
Shut the temporary output file.
388 shut "scratchfile.red";

Get expressions from file and write the main I¥TEX file. But first redefine

Tony Roberts, May 30, 2023

9 Output results 30

how these names get printed, namely as the normal form time derivatives.

389
390
391
392
393
394

defid x_,name="x"; defindex x_(down);
defid y_,name="y"; defindex y_(down);
defid z_,name="z"; defindex z_(down);
defid hh,name="\dot Z";
defid gg,name="\dot Y";
defid ff,name="\dot X";

Penultimately, write the header information file that is to be included in the
report via an \input in the modified on latex.

395
396
397
398
399
400
401
402
403
404
405
406
407
408

out "stoNFreportHdr.tex"$
write "\title{A ",textask," of your dynamical system}"$
write "\author{A. J. Roberts, University of Adelaide\\
\texttt{http://orcid.org/0000-0001-8930-1552}}
\date{\now, \today}
\def\ou\big (#1,#2,#3\big)%

{{{\rm e} "{\if#31\else#3\fi t}\star}#1\,}
\def\eps{\varepsilon}
\maketitle
Generally, the lowest order, most important,
terms are near the end of each expression.
\input{stoNFreportSys}
"$
shut "stoNFreportHdr.tex"$

Finally write to the main IATEX file so switch on latex after starting to write
to the file. Then write expressions in scratchfile.red to stoNFreport.tex
as nice WIEX. Switch off latex, to get the end of the document, and finish

writing.

409 out "stoNFreport.tex"$
410 on latex$

411 in "scratchfile.red"$
412 off latex$

413 shut "stoNFreport.tex"$

Tony Roberts, May 30, 2023

10 Fin 31

10 Fin

That’s all folks, so end the procedure, after clearing the mapping from
operators to the stored expressions.

414 clear x(7j),y(73),z(7j);

415 if theman=csuman

416 then return Finished_constructing_normal_form_of_system
417 else return Finished_invariant_manifold_of_system$

418 end$

11 Override some rlfi procedures

Now setup the rlfi package to write a I¥TEX version of the output. It is all a
bit tricky and underhand. We override some stuff from r1fi.red.?

First, change name to get Big delimiters, not left-right delimiters, so KTEX
can break lines.

419 deflist(((1(\Iblilg!) (1) \Iblilg!l)) (IPIT \Iplil)
420 ('p'i !\!p'i!) ('E 'e) (!'I 'i) (e 'e) (i !i)),’name)$

Override the procedure that prints annoying messages about multicharacter
symbols. It ends the output of one expression. This is mainly a copy from
rlfi.red with the appropriate if-statement deleted.

421 symbolic procedure prinlaend;

422 <<terpri();

423 prin2t "\)\par";

424 if !sverbatim then

425 <<prin2t "\begin{verbatim}";

426 prin2t "REDUCE Input:">>;

427 ncharspr!*:=0;

428 if ofl!* then linelength(car linel!x)
429 else laline!*:=cdr linel!x;

3Find it in reduce-algebra/trunk/packages/misc/rlfi.red

Tony Roberts, May 30, 2023

reduce-algebra/trunk/packages/misc/rlfi.red

11 Override some rlfi procedures 32

430 nochar!*:=append(nochar!*,nocharl!*);
431 nocharl!*:=nil >>$

Similarly, hardcode at the beginning of expression output that the mathe-
matics is in inline mode.

432 symbolic procedure prinlabegin;

433 <<if !*verbatim then

434 <<terpri();

435 prin2t "\end{verbatim}">>;

436 linel!*:=linelength nil . laline!x*;
437 if ofl!* then linelength(laline!* + 2)
438 else laline!*:=car linel!x - 2;

439 prin2 "\ (" >>$

Override the procedure that outputs the IATEX preamble upon the command
on latex.

440 symbolic procedure latexon;

441 <<!x!xa2sfn:=’texaeval;

442 Ixraise:=nil;

443 prin2t "\documentclass[11pt,abpaper]{article}";
444 prin2t "\usepackage [abpaper,margin=13mm]{geometry}";
445 prin2t "\usepackage{parskip,time} \raggedright";
446 prin2t "\begin{document}\input{stoNFreportHdr}";
447 if !*verbatim then

448 <<prin2t "\begin{verbatim}";

449 prin2t "REDUCE Input:">>;

450 put(’tex,’rtypefn,’(lambda(x) ’tex)) >>$

End the file when input to Reduce

451 end;

Tony Roberts, May 30, 2023

References 33

References

Carr, J. (1981), Applications of centre manifold theory, Vol. 35 of Applied
Math. Sci., Springer—Verlag.
http://books.google.com.au/books?id=93BdN7btysoC

Chao, X. & Roberts, A. J. (1996), ‘On the low-dimensional modelling of
Stratonovich stochastic differential equations’, Physica A 225, 62—80.

Cox, S. M. & Roberts, A. J. (1991), ‘Centre manifolds of forced dynamical
systems’; J. Austral. Math. Soc. B 32, 401-436.

Fateman, R. (2003), ‘Comparing the speed of programs for sparse polynomial
multiplication’, ACM SIGSAM Bulletin 37(1), 4-15.
http://www.cs.berkeley.edu/~fateman/papers/fastmult.pdf

Haragus, M. & Iooss, G. (2011), Local Bifurcations, Center Manifolds, and
Normal Forms in Infinite-Dimensional Dynamical Systems, Springer.

Knobloch, H.-W. & Aulbach, B. (1982), The role of center manifolds in
ordinary differential equations, in M. Gregus, ed., ‘Proceedings of the fifth
Czechoslovak conference on differential equations and their applications’,
BSB B.G. Teubner Verlagsgesellschaft, Leipzig, pp. 179-189.
http://dml.cz/bitstream/handle/10338.dmlcz/702285/Equadiff_
05-1982-1_40.pdf

Roberts, A. J. (1997), ‘Low-dimensional modelling of dynamics via computer
algebra’, Computer Phys. Comm. 100, 215-230.

Roberts, A. J. (2008), ‘Normal form transforms separate slow and fast modes
in stochastic dynamical systems’, Physica A 387, 12-38.

Roberts, A. J. (2009-2023), Normal form of stochastic or deterministic
multiscale differential equations, Technical report, http://www.maths.
adelaide.edu.au/anthony.roberts/sdenf . php.

Roberts, A. J. (2015), Model emergent dynamics in complex systems, STAM,
Philadelphia.
http://bookstore.siam.org/mm20/

Tony Roberts, May 30, 2023

http://www.maths.adelaide.edu.au/anthony.roberts/sdenf.php
http://www.maths.adelaide.edu.au/anthony.roberts/sdenf.php

References 34

Roberts, A. J. (2019), Backwards theory supports modelling via invariant
manifolds for non-autonomous dynamical systems, Technical report, [http:
//arxiv.org/abs/1804.06998].

Tony Roberts, May 30, 2023

http://arxiv.org/abs/1804.06998
http://arxiv.org/abs/1804.06998

	Introduction
	A simple example: examplenormform()

	Header of the procedure
	Preamble to the procedure
	Extract and scale slow equations
	Extract and scale stable fast equations
	Extract and scale unstable fast equations

	Setup LaTeX output using rlfi
	Delayed write of text info
	Represent the noise
	Operators to solve noisy homological equation
	Initialise approximate transform
	Iterative updates
	Fast stable modes
	Fast unstable modes
	Slow modes

	Output results
	Plain text version
	LaTeX version

	Fin
	Override some rlfi procedures

