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Good science is the ability to look at things in a new way and
achieve an understanding that you didn’t have before ... It
is opening windows on the world ... you perceive a little tiny
glimpse of the way the Universe hangs together, which is a
wonderful feeling. Hans Kornberg [?]

Abstract

Fractal geometry, largely inspired by Benoit Mandelbrot [1] during
the sixties and seventies, is one of the great advances in mathematics for
two thousand years. Given the rich and diverse power of developments
in mathematics and its applications, this is a remarkable claim. Often
presented as being just a part of modern chaos theory, fractals are
momentous in their own right. Euclid’s geometry describes the world
around us in terms of points, lines and planes—for two thousand years
these have formed the somewhat limited repertoire of basic geometric
objects with which to describe the universe. Fractals immeasurably
enhance this world-view by providing a description of much around
us that is rough and fragmented—of objects that have structure on
many sizes. Examples include: coastlines, rivers, plant distributions,
architecture, wind gusts, music, and the cardiovascular system.

Contents

1 Some fractal models
1.1 Noise and natural events . . . . . . . . .. .. ... ... ...
1.2 Coastlines and rivers . . . . . . . . . . . ... .. ... ...
1.3 Turbulence . . . ... ... . ... ...

2 Scaling and dimensionality
2.1 Points, lines and planes . . . . . ... ... ... .. .....

References

=~ w NN

N



1 Some fractal models 2

Figure 1: steps in the construction of a Cantor set.

1 Some fractal models

Before discussing in detail the common feature of the previously mentioned
examples, in Section 2, I present a few examples of fractals and the type of
physical applications that they have.

1.1 Noise and natural events

Have you ever noticed that there are

e some days where nothing goes right?
e times when you just cannot get a decent telephone connection?

e years when drought follows drought?

long periods when gusts of wind come thick and fast?

That events often occur in bursts is a well documented aspect of the world.
The Cantor set', as shown in Figure 1, is a model for such bursty phenomena.
Construct the Cantor set in the following manner:

1. start with a bar of some length;
2. then remove its middle third to leave two separate thirds;
3. then remove the middle thirds of these to leave four separate ninths;

4. then remove the middle thirds of these to obtain eight separate twenty-
sevenths;

5. and so on.

Eventually we just obtain a scattered dust of points. However, this dust is
specially distributed into pairs of points, of pairs of pairs of points, and so on.
If the original bar represented a time interval, then the dust represents times
when events occur and the striking feature is that there are long quiescent
periods separating the short bursts of activity that a clump of the points
represents.

!Cantor was a 19th century mathematician interested in constructing sets with para-
doxical properties.
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Figure 2: steps in the construction of a Koch island.

1.2 Coastlines and rivers

The line of a coast or the path of a river is tortuous. On a small-scale
map of Australia or any other country the coastline has lots of wriggles.
Upon examining a larger-scale map the wriggles will be resolved clearly into
gulfs and peninsulas. However, many smaller scale wriggles will still be
seen. These can only be resolved by looking at an even larger scale map,
whereupon they will be seen to be inlets and spits. But once again there
will be wriggles in the coast.? Similarly for rivers—they exhibit bends and
meanders upon many scales of length. The Koch curve shown in Figure 2
models these phenomena.

Starting with an equilateral triangle, we replace the middle third of each
side by two segments of the same length (as if we pasted an equilateral
triangle of one-third the size onto each side); this forms the second picture
above showing large-scale peninsulas and bays. Repeating this process of
extracting the middle third of each straight side and replacing it with two
segments of the same length, the next stage of the construction gives the
third picture; it shows smaller inlets and spits. Continually repeating this
process leads to a very wriggly line that is the Koch curve. It is perhaps too
convoluted for a coastline, but on the other hand, it looks far more realistic
than a routine curve!

2L. F. Richardson, see Section 1.3, also was responsible for recognising these fractal
characteristics of coastlines.
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1.3 Turbulence

Most mathematicians, physicists and engineers would give their right arm to
understand what is going on in this picture. It shows something of the highly
complex motion that is turbulence in a fluid as expressed by the following
ditty® by L. F. Richardson [3]:

Big whorls have little whorls,
Which feed on their velocity;

And little whorls have lesser whorls,
and so on to viscosity.

When air or water moves, a smooth flow quickly breaks up into swirling
eddies. These eddies are of a wide range of sizes and, as on a windy day, there
are often quiescent periods separating the various wind gusts. The structure
of turbulence may be epitomised by a Sierpinski sponge which is formed
from building blocks in much the same way as the “Eiffel tower.” Form a
small unit by putting 20 blocks face to face along the edges and corners of
a 3 X 3 X 3 cube, leaving the middle of the six faces and the middle of the
cube vacant. Make a bigger unit by connecting 20 of these units together in
the same 3 x 3 x 3 pattern. And so on to as large a scale as possible.

2 Scaling and dimensionality

The common theme in these examples is not just that they have detail on
many lengths, but also that the structure at any scale is much the same at any
other scale—the coastline around a continent looks just like any small part
of the coastline. If we take a magnifying glass or microscope to any of these
examples then, no matter what the magnification, the geometric detail that
we see is the same. This property of looking similar at all scales is termed
self-similarity: exact in the artificial examples, and statistical or random in
practical applications. In order to tease out the self-similar characteristics
of such objects we need to explore the fractal over many lengths and sizes,
summarised by equation (1).

The coarsest characteristic of fractals is their dimensionality. While we
normally expect a dimension to be an integer, a natural number such as 1, 2
or 3, fractals are best described by means of a dimension which is fractional,
such as 1.2 or 0.69. This dimension is obtained by blurring the fractal at some
size, counting the number of blobs in this blurred picture, and then seeing
how the count varies with the size of the blurring. Another explanation of
this process is to count how few “clumps” of a certain size the object can be
broken into, and then see how this count varies with the size of the clump.

3This ditty is derived from: Big fleas have little fleas upon their backs to bite them,
and little fleas have lesser fleas, and so on ad infinitum.
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2.1 Points, lines and planes

Lets become familiar with the argument via some well known geometric
examples: points, lines, and planes. Consider a line of some length L as
shown below. The line could be curved, but for simplicity we take it to be
straight. To “blur” the object at a size d I mean that we try to cover as much
of the object as possible by discs of diameter d. In this picture I have used
N = 9 discs to cover the line segment. If the discs were half the diameter,
then we would have to use twice as many of them to cover the line; if the
discs were one-third the diameter then we would have to use three times as
many to cover the line; and so on for other sizes. Typically, the number of
discs needed to cover a line of length L is N = L/d. The important aspect
of this relation is that the number of discs is inversely proportional to the
first power of the size (diameter) of the discs: N oc d 1.

Contrast this with what happens when we cover an area A of the plane
with discs of some diameter d: N = 34 in the above example. Typically, the
number of discs needed to cover an area A is inversely proportional to the
second power of the size of the discs: N oc d~2; the number would be close
to the area, A, divided by the area of each disc, 7wd?/4, to be

1
md?

if it were not for the wastage around the perimeter of each disc.

See that the exponent of this relation between N, the number of discs,
and the size of the discs, as measured by the diameter d, is precisely the
dimensionality of the object: a line is one-dimensional; an area of the plane is
two-dimensional. This relation between the exponent and the dimensionality
is true in general. For another example, consider a small number, n, of
points distributed in space—for all d smaller than the minimum separation
between the points the number of discs needed is precisely the same as the
number of points in the set. Thus N = n x d°, and the 0 exponent matches
the zero-dimensionality of a point or a finite number of points.

For the geometric objects introduced earlier, the relation between N and
d involves a fractional exponent D:

N xdP. (1)
It is only reasonable for us to say that the dimensionality of such an object
is the fraction D.
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Table 1: common Euclidean and fractal objects and their fractal dimension.

Object Dimension
point 0
Cantor set, Section 1.1 0.6309
line 1
Koch curve, Section 1.2 1.2619
plane 2
Sierpinski sponge, Section 1.3 2.7268
solid 3

[3] L. F. Richardson, somewhere and sometime in the 1920s.
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