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Instructions

• Download and install the computer algebra package Reduce
via http://www.reduce-algebra.com

• Navigate to folder Examples within folder InvariantManifold.

• For each example of interest, start-up Reduce and enter the
command in_tex "filename.tex"$ where filename is the
root name of the example (as listed in the following table of
contents).
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1 Five representative examples

1.1 simple3d: Slow manifold of a basic 3D system

The basic example system to analyse for a slow manifold is

u̇1 = 2u1 + u2 + 2u3 + u2u3 ,

u̇2 = u1 − u2 + u3 − u1u3 ,
u̇3 = −3u1 − u2 − 3u3 − u1u2 ,

(Section 1.5 constructs its stable manifold).

Start by loading the procedure.

1 in_tex "../invariantManifold.tex"$

Execute the construction of the slow manifold for this system.

2 invariantmanifold(

3 mat(( 2*u1+u2+2*u3+u2*u3,

4 u1-u2+u3-u1*u3,

5 -3*u1-u2-3*u3-u1*u2 )),

6 mat((0)),

7 mat((1,0,-1)),

8 mat((4,1,3)),

9 3 )$

10 end;

The matrix
[

2 1 2
1 −1 1
−3 −1 −3

]
of the linearisation about the origin has

eigenvalues zero and −1 (multiplicity two). We seek the slow
manifold so specify the eigenvalue zero in the second parameter to
the procedure. A corresponding eigenvector is ~e = (1, 0,−1), and
corresponding left-eigenvector is ~z = (4, 1, 3), as specified above.
The last parameter, 3, specifies to construct the slow manifold to
errors O

(
ε3
)
.

The procedure actually analyses the embedding system

u̇1 = 2u1 + u2 + 2u3 + εu2u3 ,

u̇2 = u1 − u2 + u3 − εu1u3 ,
u̇3 = −3u1 − u2 − 3u3 − εu1u2 .

Consequently, here the artificial parameter ε has a physical inter-
pretation in that it counts the nonlinearity: a term in εp will be
a (p + 1)th order term in ~u = (u1, u2, u3). Hence the specified
error O

(
ε3
)

is here the same as error O
(
|~u|4
)

and O
(
|~s|4
)
.

The slow manifold The constructed slow manifold is, in terms
of the parameter s1 (to error O

(
ε2
)
, and reverse ordering!),

u1 = −εs21 + s1 , u2 = εs21 , u3 = εs21 − s1 .
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Slow manifold ODEs On this slow manifold the evolution is

ṡ1 = −9ε2s31 + εs21 .

Here the leading term in s21 establishes the origin is unstable.1

Normals to isochrons at the slow manifold To project initial
conditions onto the slow manifold, or non-autonomous forcing, or
modifications of the original system, or to quantify uncertainty
(Roberts 1989, 2000), use the projection defined by the derived
vector

~z1 =

[
z11
z12

]
=

258ε2s21 − 16εs1 + 4
93ε2s21 − 9εs1 + 1

240ε2s21 − 16εs1 + 3

 .
Evaluate these at ε = 1 to apply to the original specified system,
or here just interpret ε as a way to count the order of each term.

1.2 doubleHopfDDE: Double Hopf interaction in a 2D DDE

Erneux (2009) [§7.2] explored an example of a laser subject to
optoelectronic feedback, coded as a delay differential equation. For
certain parameter values it has a two frequency Hopf bifurcation.
Near Erneux’s parameters (η, θ) = (3/5, 2), the system may be
represented as

u̇1 = −4(1 + δ)2
[
5
8u2 + 3

8u2(t− π)
]

u̇2 = u1(1 + u2).

for small parameter δ. Due to the delay, u2(t − π), this system
is effectively an infinite-dimensional dynamical system. Here we
describe the emergent dynamics on its four-dimensional centre
manifold.

The linearisation of this system at the origin has modes with fre-
quencies ω = 1, 2, and corresponding eigenvectors (1,∓i/ω)e±iωt.
Corresponding eigenvectors of the adjoint are (1,∓iω)e±iωt. We
model the nonlinear interaction of these four modes over long times.

Start by loading the procedure.

11 in_tex "../invariantManifold.tex"$

But turn off gcd as it wrecks this code for some unknown reason.

12 off gcd,ezgcd;

In the printed output, group terms with like powers of amplitudes sj ,
the complex exponential, and the parameter δ.

13 factor s,delta,exp;

1 Then the large negative s31 term suggests the existence of a finite amplitude
equilibrium with s1 ≈ 1/9 (it is actually closer to s1 ≈ 0.2).
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Execute the construction of the slow manifold for this system,
where u2(pi) denotes the delayed variable u2(t − π), and where
1+small*delta reflects that we wish to use the ‘small’ parameter δ
to explore regimes where this factor is near the value 1.

14 invariantmanifold(

15 mat(( -4*(1+small*delta)^2*(5/8*u2 +3/8*u2(pi)),

16 +u1*(1+u2) )),

17 mat(( i,-i,2*i,-2*i )),

18 mat( (1,-i), (1,+i), (1,-i/2), (1,+i/2) ),

19 mat( (1,-i), (1,+i), (1,-2*i), (1,+2*i) ),

20 3 )$

21 end;

The code works for errors of order higher than cubic, but is much
slower: takes several minutes per iteration.

The procedure actually analyses the embedding system

u̇1 = −4(1 + 2ε2δ + ε3δ2)
[
5
8u2 + 3

8u2(t− π)
]

u̇2 = u1(1 + εu2).

The centre manifold These give the location of the invariant
manifold in terms of parameters sj . Here, u1 ≈ s1e

it + s2e
−it +

s3e
i2t + s4e

−i2t so that (for real solutions) s1, s2 are complex conju-
gate amplitudes that modulate the oscillations of frequency ω = 1 ,
whereas s3, s4 are complex conjugate amplitudes that modulate the
oscillations of frequency ω = 2 .

u1 = e−its4s1ε
(
0.2309i− 0.04495

)
+ e−its2 + 0.1667 e−4its24εi+

0.1875 e−3its4s2εi+ e−2its4 + e−2its22ε
(
− 0.3953i− 0.1233

)
+

eits3s2ε
(
− 0.2309i− 0.04495

)
+ eits1 − 0.1667 e4its23εi−

0.1875 e3its3s1εi+ e2its3 + e2its21ε
(
0.3953i− 0.1233

)
u2 = e−its4s1ε

(
0.04495i+ 0.2309

)
+ e−its2i− 0.1667 e−4its24ε−

0.5625 e−3its4s2ε+0.5 e−2its4i+ e−2its22ε
(
0.06167i−0.1977

)
+

eits3s2ε
(
− 0.04495i+ 0.2309

)
− eits1i− 0.1667 e4its23ε−

0.5625 e3its3s1ε− 0.5 e2its3i+ e2its21ε
(
− 0.06167i− 0.1977

)
Centre manifold ODEs The system evolves on the invariant
manifold such that the parameters evolve according to these ODEs
that characterise how the modulation of the oscillations evolve due
to their nonlinear interaction.

ṡ1 = s4s3s1ε
2
(
−0.03089i+0.05032

)
+s3s2ε

(
−0.08991i−0.03816

)
+

s2s
2
1ε

2
(
− 0.01837i− 0.1095

)
+ s1δε

2
(
0.1526i− 0.3596

)
ṡ2 = s4s3s2ε

2
(
0.03089i+ 0.05032

)
+ s4s1ε

(
0.08991i− 0.03816

)
+

s22s1ε
2
(
0.01837i− 0.1095

)
+ s2δε

2
(
− 0.1526i− 0.3596

)
ṡ3 = s4s

2
3ε

2
(
− 0.0349i− 0.04111

)
+ s3s2s1ε

2
(
− 0.2499i−

0.2153
)

+ s3δε
2
(
0.8376i+ 0.9867

)
+ s21ε

(
− 0.4934i+ 0.4188

)
ṡ4 = s24s3ε

2
(
0.0349i− 0.04111

)
+ s4s2s1ε

2
(
0.2499i− 0.2153

)
+

s4δε
2
(
− 0.8376i+ 0.9867

)
+ s22ε

(
0.4934i+ 0.4188

)
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1.3 metastable4: Metastability in a four state Markov chain

Variable ε characterises the rate of exchange between metastable
states u1 and u4 in this system (Roberts 2015, Exercise 5.1):

u̇1 = +u2 − εu1 ,
u̇2 = −u2 + ε(u3 − u2 + u1),

u̇3 = −u3 + ε(u4 − u3 + u2),

u̇4 = +u3 − εu4 .

Start by loading the procedure.

22 in_tex "../invariantManifold.tex"$

Execute the construction of the slow manifold for this system. The
explicit parameter small, math-name ε, gets replaced by small^2

in the code, so in effect ε2 = ε .

23 invariantmanifold(

24 mat(( u2-small*u1,

25 -u2+small*(u1-u2+u3),

26 -u3+small*(u2-u3+u4),

27 u3-small*u4 )),

28 mat((0,0)),

29 mat((1,0,0,0),(0,0,0,1)),

30 mat((1,1,0,0),(0,0,1,1)),

31 6 )$

32 end;

The matrix

[
0 1 0 0
0 −1 0 0
0 0 −1 0
0 0 1 0

]
, of the linearisation about ε = 0, has eigen-

values 0 and −1 (both multiplicity two). We seek the slow manifold
so specify the two zero eigenvalues in the second parameter to the
procedure. Corresponding eigenvectors are ~e1 = (1, 0, 0, 0) and
~e2 = (0, 0, 0, 1). Choosing corresponding left-vector (here not an
eigenvector) is ~z1 = (1, 1, 0, 0) and ~z2 = (0, 0, 1, 1) means that the
slow manifold parameters s1, s2 have the physical meaning, respec-
tively, of being the probability that the system is in states {1, 2}
and {3, 4}. The last parameter, 6, specifies to construct the slow
manifold to errors O

(
ε6
)
, that is, errors O

(
ε3
)
.

The slow manifold The constructed slow manifold is, in terms
of the lumped-state probability parameters s1, s2 (to error O

(
ε2
)
,

and reverse ordering!),

u1 = ε4
(
− s2 + 2s1

)
− ε2s1 + s1 , u3 = ε4

(
− 2s2 + s1

)
+ ε2s2 ,

u2 = ε4
(
s2 − 2s1

)
+ ε2s1 , u4 = ε4

(
2s2 − s1

)
− ε2s2 + s2 .

Slow manifold ODEs On this slow manifold the evolution of
the lumped-state probabilities is

ṡ1 = ε4
(
s2 − s1

)
, ṡ2 = ε4

(
− s2 + s1

)
.
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Hence here the long-term evolution is that on a time-scale ofO
(
1/ε2

)
,

O
(
1/ε4

)
, the system equilibrates between the two lumped states,

that is, between {1, 2} and {3, 4}.

Normals to isochrons at the slow manifold To project initial
conditions onto the slow manifold, or non-autonomous forcing, or
modifications of the original system, or to quantify uncertainty
(Roberts 1989, 2000), use the projection defined by the derived
vector

~z1 =


z11
z12
z13
z14

 =


ε4 + 1

4ε4 − ε2 + 1
−4ε4 + ε2

−ε4

 , ~z2 =


z21
z22
z23
z24

 =


−ε4

−4ε4 + ε2

4ε4 − ε2 + 1
ε4 + 1

 .
Evaluate all these at ε2 = ε to apply to the original specified system.

1.4 nonlinNormModes: Interaction of nonlinear normal modes

Renson et al. (2012) explored finite element construction of the
nonlinear normal modes of a pair of coupled oscillators. Defining
two new variables one of their example systems is

ẋ1 = x3 , ẋ3 = −2x1 + x2 −
1

2
x31 +

3

10
(−x3 + x4) ,

ẋ2 = x4 , ẋ4 = x1 − 2x2 +
3

10
(x3 − 2x4) .

The linearisation of this system at the origin has modes with fre-
quencies ω = 1,

√
3, corresponding eigenvalues λ = ±i,±i

√
3, and

corresponding eigenvectors?? (1, 1,±iω,±iω). Corresponding eigen-
vectors of the adjoint are (1, 1,±i,±i) and (∓iω,±iω, 1,−1). We
model the nonlinear interaction of these four modes over long times.

Here, the analysis constructs a full state space coordinate trans-
formation. We find a mapping from the modulation variables
~s = (s1, s2, s3, s4) to the original variables ~u = (u1, u2, u3, u4), and
find the corresponding evolution of ~s. The modulation variables ~s
are ‘slow’ because the coordinate transform uses time-dependent
(rotating) basis vectors that account for the fast oscillation in ~u.
Hence the new variables ~s are good variables for making long-term
predictions and forming understanding.

Start by loading the procedure.

33 in_tex "../invariantManifold.tex"$

In the printed output, group terms with like powers of amplitudes sj ,
and the complex exponential.

34 factor small;

The following code makes the linear damping to be effectively small
(which then makes it small squared); consequently, also scale the
smallness of the cubic nonlinearity to match.
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35 invariantmanifold(

36 mat(( u3,

37 u4,

38 -2*u1 +u2 -small*u1^3/2 +small*3/10*(-u3+u4),

39 u1 -2*u2 +small*3/10*(u3 -2*u4) )),

40 mat(( i,-i,sqrt(3)*i,-sqrt(3)*i )),

41 mat( (1,1,+i,+i), (1,1,-i,-i),

42 (1,-1,i*sqrt(3),-i*sqrt(3)),

43 (1,-1,-i*sqrt(3),i*sqrt(3)) ),

44 mat( (1,1,+i,+i), (1,1,-i,-i),

45 (-i*sqrt(3),+i*sqrt(3),1,-1),

46 (+i*sqrt(3),-i*sqrt(3),1,-1) ),

47 3 )$

48 end;

The square root eigenvalues do not cause any trouble (although
one may need to reformat the LaTeX of the exp operator). In the
model, observe that s1 = s2 = 0 is invariant, as is s3 = s4 = 0.
These are the nonlinear normal modes.

The procedure actually analyses the embedding system

u̇1 = u3 , u̇3 = ε2
(
− 1/2u31 − 3/10u3 + 3/10u4

)
− 2u1 + u2 ,

u̇2 = u4 , u̇4 = ε2
(
3/10u3 − 3/5u4

)
+ u1 − 2u2 .

The invariant manifold Here these give the reparametrisation
of the state space ~u in terms of parameters sj , via rotating basis
vectors. Here, the coordinate transform is very complicated so I do
not give the complexity. The leading approximation is, of course,
the linear, errors O

(
ε2
)
,

u1 = e−
√
3its4 + e−its2 + e

√
3its3 + eits1

u2 = − e−
√
3its4 + e−its2 − e

√
3its3 + eits1

u3 = −
√

3 e−
√
3its4i− e−its2i+

√
3 e
√
3its3i+ eits1i

u4 =
√

3 e−
√
3its4i− e−its2i−

√
3 e
√
3its3i+ eits1i

Invariant manifold ODEs The system evolves according to
these ODEs that characterise how the modulation of the oscillations
evolve in state space due to their nonlinear interaction.

ṡ1 = 3/4s4s3s1ε
2i+ 3/8s2s

2
1ε

2i− 3/40s1ε
2

ṡ2 = −3/4s4s3s2ε
2i− 3/8s22s1ε

2i− 3/40s2ε
2

ṡ3 = 1/8
√

3s4s
2
3ε

2i+ 1/4
√

3s3s2s1ε
2i− 3/8s3ε

2

ṡ4 = −1/8
√

3s24s3ε
2i− 1/4

√
3s4s2s1ε

2i− 3/8s4ε
2

Here one can see that each oscillation decays, with a frequency
shift due to a combination of nonlinear interaction and nonlinear
self-interaction.
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1.5 stable3d: Stable manifold of a basic 3D system

Let’s revisit the example of Section 1.1, namely

u̇1 = 2u1 + u2 + 2u3 + u2u3 ,

u̇2 = u1 − u2 + u3 − u1u3 ,
u̇3 = −3u1 − u2 − 3u3 − u1u2 ,

but here construct its 2D stable manifold.

Start by loading the procedure.

49 in_tex "../invariantManifold.tex"$

Execute the construction of the stable manifold for this system.

50 invariantmanifold(

51 mat(( 2*u1+u2+2*u3+u2*u3,

52 u1-u2+u3-u1*u3,

53 -3*u1-u2-3*u3-u1*u2 )),

54 mat(( -1,-1 )),

55 mat( (1,-1,-1),(0.4,1.4,-1) ),

56 mat( (1,0,1),(1,0,-1) ),

57 3 )$

58 end;

The matrix
[

2 1 2
1 −1 1
−3 −1 −3

]
of the linearisation about the origin has

eigenvalues 0 and −1 (multiplicity two). We seek the 2D stable man-
ifold so specify the eigenvalue −1, twice, in the second parameter
to the procedure. A corresponding eigenvector is ~e1 = (1,−1,−1),
and corresponding left-eigenvector is ~z2 = (1, 0, 1), as specified
above. We need two basis eigenvectors, but here there is only one
because the other is a generalised eigenvector. We must do more
work to find a generalised eigenvector is ~e2 = (0.4, 1.4,−1), and a
generalised left-eigenvector is ~z2 = (1, 0,−1). The last parameter, 3,
specifies to construct the stable manifold to errors O

(
ε3
)
.

Because of the generalised eigenvector, the procedure modifies
the linear terms to a more convenient form (not necessary, just
convenient)—see the warning in its report. So, the procedure
actually analyses the embedding system

u̇1 = ε
(
− u1 + u2u3 − u3

)
+ 3u1 + u2 + 3u3 ,

u̇2 = ε
(
− u1u3 + u1 + u3

)
− u2 ,

u̇3 = ε
(
− u1u2 + u1 + u3

)
− 4u1 − u2 − 4u3 .

The stable manifold The constructed stable manifold is, in
terms of the parameters s1, s2 (to error O

(
ε2
)
, and reverse ordering!,

u1 = ε
(
−51/25 e−2ts22−6/5 e−2ts2s1+3 e−2ts21

)
+2/5 e−ts2+ e−ts1 ,

u2 = ε
(
− 2/5 e−2ts22− 7/5 e−2ts2s1− e−2ts21

)
+ 7/5 e−ts2− e−ts1 ,

Tony Roberts, November 26, 2022



1 Five representative examples 10

u3 = ε
(
4 e−2ts22 + 13/5 e−2ts2s1 − 5 e−2ts21

)
− e−ts2 − e−ts1 .

Observe the linear terms in ~s all have e−t, and the quadratic terms
in ~s all have e−2t. Consequently, we could in principle write the
stable manifold in terms of, say, the variables xj = sje

−t giving

u1 = ε
(
− 51/25x22 − 6/5x2x1 + 3x21

)
+ 2/5x2 + x1 ,

u2 = ε
(
− 2/5x22 − 7/5x2x1 − x21

)
+ 7/5x2 − x1 ,

u3 = ε
(
4x22 + 13/5x2x1 − 5x21

)
− x2 − x1 .

This would be a more usual parametrisation. But here let’s remain
with ~s and remember to interpret ~s as modifying the exponential
decay e−t on this stable manifold.

Stable manifold ODEs On the stable manifold the evolution is

ṡ1 = 3/5εs2 , ṡ2 = 0 .

So, s2 is constant, and hence s1 increases linearly. But such increase
only modifies slightly the robust exponential decay, e−t, on the
stable manifold.

In terms of ~x this evolution is ẋ1 = −x1 + 3
5εx2 , ẋ2 = −x2 .
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2 Harmonically forced systems

2.1 marcusYamabe: Discover Marcus–Yamabe instability

In nonautonomous systems, such as ~̇u = L(t)~u, just because eigen-
values of L(t) have real-part negative, for all t, does not mean that
all solutions ~u(t) decay. Here consider the Marcus–Yamabe system
(Chicone 2006, p.197)

d~u

dt
= L(t)~u for L :=

[
−1 + 3

2ε
2 cos2 t 1− 3

2ε
2 sin t cos t

−1− 3
2ε

2 sin t cos t −1 + 3
2ε

2 sin2 t

]
.

(1)
For example, for ε = 1, the eigenvalues of L(t) are 1

4(−1 ±
√

7i)
(independent of time). Despite the eigenvalues having negative
real-part, there are growing solutions ~u = (− cos t, sin t)et/2.

Here analyse the system with the late-2022 version of invariantManifold.tex
that caters for sinusoidal non-autonomous coefficients and forcing.

59 in_tex "../invariantManifold.tex"$

60 factor small;

Encode the system with small = ε. We find instability pre-
dicted when 3

2ε
2 > 1; that is, |ε| > 0.8165; for example, ε = 1

as commented above. Then the induced growth of complex ampli-
tudes s1 and s2 overcomes the e−t decay that is in u1 = e(−1+i)ts1 +
e(−1−i)ts2.

61 invariantmanifold(

62 mat((-u1+u2 +small*( 3/2*cos(t)^2*u1 -3/2*cos(t)*sin(t)*u2),

63 -u1-u2 +small*(-3/2*cos(t)*sin(t)*u1 +3/2*sin(t)^2*u2)

64 )),

65 mat(( -1+i, -1-i )),

66 mat( (1,i), (1,-i) ),

67 mat( (1,i), (1,-i) ),

68 9)$

69 end;

The function finds the following exact time-dependent transforma-
tion of this linear system. These parameterise state space in terms
of sj :

u1 = e−it−ts2 + eit−ts1 +O
(
ε8
)

u2 = − e−it−ts2i+ eit−ts1i+O
(
ε8
)

Then the system evolves in state space such that the parameters
evolve according to these odes.

ṡ1 = ε2
(
3/4s2 + 3/4s1

)
+O

(
ε9
)

ṡ2 = ε2
(
3/4s2 + 3/4s1

)
+O

(
ε9
)

The eigenvalues of the above system are λ = 0, 32ε
2. Hence the

net growth of ~u is at rate −1 + 3
2ε

2; for example, at the unstable
rate +1/2 when ε = 1.
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2.2 forcedNonlinNormMode: harmonically forced nonlinear normal mode

Renson et al. (2012) explored finite element construction of the
nonlinear normal modes of a pair of coupled oscillators. Let’s apply
periodic forcing to their example, Section 1.4, both direct and
parametric. For example, here derive the effect on the mode with
frequency one. Defining two new variables one of their example
systems is

ẋ1 = x3 , ẋ3 = −2x1 + x2 −
1

2
x31 +

3

10
(−x3 + x4) + f1 cos t ,

ẋ2 = x4 , ẋ4 = x1 − 2x2 +
3

10
(x3 − 2x4)f2 sin(t/2).

where f1 is the strength of the direct forcing, and f2 is the strength
of the parametric oscillation in the last ode. The linearisation of
this system at the origin has modes with frequencies ω = 1,

√
3,

corresponding eigenvalues λ = ±i,±i
√

3, and corresponding eigen-
vectors (1, 1,±iω,±iω). Corresponding eigenvectors of the adjoint
are (1, 1,±i,±i) and (∓iω,±iω, 1,−1). We model the nonlinear
forced dynamics of the frequency one mode.

Here, the analysis constructs a nonlinear normal mode, time-
dependent, coordinate transformation. We find a time-dependent
mapping from the modulation variables ~s = (s1, s2) to the original
variables ~u = (u1, u2, u3, u4), and find the corresponding evolution
of ~s. The modulation variables ~s are ‘slow’ because the coordi-
nate transform uses time-dependent (rotating) basis vectors that
account for the fast oscillation in ~u. Hence the new variables ~s
are good variables for making long-term predictions and forming
understanding.

Start by loading the procedure.

70 in_tex "../invariantManifold.tex"$

In the printed output, group terms with like powers of amplitudes sj ,
and the complex exponential.

71 factor f_1,f_2,small;

The following code makes the linear damping to be effectively small
(which then makes it small squared); consequently, also scale the
smallness of the cubic nonlinearity to match.

72 invariantmanifold(

73 mat(( u3, u4,

74 -2*u1+u2-small*u1^3/2+small*3/10*(-u3+u4)+small*f_1*sin(t),

75 u1-2*u2+small*3/10*(u3-2*u4)*f_2*cos(t/2) )),

76 mat(( i,-i )),

77 mat( (1,1,+i,+i), (1,1,-i,-i) ),

78 mat( (1,1,+i,+i), (1,1,-i,-i) ),

79 5 )$

80 end;
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In the derived odes for the modulation of the frequency one mode,
see that the direct forcing drives effects first seen in terms linear
in f1. However, the parametric forcing drives effects quadratic in f2
and so our higher-order, systematic, analysis is required.

The procedure actually analyses the embedding system

u̇1 = u3 , u̇2 = u4 ,

u̇3 = f1ε
2
(
1
2 e−iti− 1

2 eiti
)

+ ε2
(
− 1

2u
3
1 − 3

10u3 + 3
10u4

)
− 2u1 + u2 ,

u̇4 = f2ε
2
(

3
20 e−it/2u3 − 3

10 e−it/2u4 + 3
20 eit/2u3 − 3

10 eit/2u4
)

+ u1 − 2u2 .

The invariant manifold Here these give the reparametrisation
of the state space ~u in terms of parameters sj , via rotating basis
vectors. Here, the coordinate transform is very complicated so I do
not give the complexity. The leading approximation is, of course,
the linear, errors O

(
ε2
)
,

u1 = + e−its2 + eits1 +O
(
ε2
)

u2 = + e−its2 + eits1 +O
(
ε2
)

u3 = − e−its2i+ eits1i+O
(
ε2
)

u4 = − e−its2i+ eits1i+O
(
ε2
)

Invariant manifold ODEs The system evolves according to
these ODEs that characterise how the modulation of the oscillations
evolve in state space due to nonlinearity and the forcing.

ṡ1 = f1ε
4
(

9
64s2s1 −

9
128s

2
1 + 3

160 i
)
− 1

8f1ε
2 + 93

5500f
2
2 ε

4s1i

+ ε4
(
− 155

256s
2
2s

3
1i+ 9

160s2s
2
1

)
+ 3

8ε
2s2s

2
1i+O

(
ε5
)

ṡ2 = f1ε
4
(
− 9

128s
2
2 + 9

64s2s1 −
3

160 i
)
− 1

8f1ε
2 − 93

5500f
2
2 ε

4s2i

+ ε4
(
155
256s

3
2s

2
1i+ 9

160s
2
2s1
)
− 3

8ε
2s22s1i+O

(
ε5
)

The second lines of these odes are the terms from the nonau-
tonomous part of the system. The first line are the terms induced
by the harmonic forcing. The parametric oscillation just induces
an O

(
f22
)

frequency shift. The direct harmonic forcing induces a
direct O

(
f1
)

forcing of the amplitudes sj .
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3 Slow invariant manifolds

Also see Sections 1.1 and 1.3.

3.1 simple2d: Slow manifold of a simple 2D system

The example system to analyse is specified to be

u̇1 = −u1 + u2 − u21 , u̇2 = u1 − u2 + u22 .

Start by loading the procedure.

81 in_tex "../invariantManifold.tex"$

Execute the construction of the slow manifold for this system.

82 invariantmanifold(

83 mat((-u1+u2-u1^2,u1-u2+u2^2)),

84 mat((0)),

85 mat((1,1)),

86 mat((1,1)),

87 5)$

88 end;

We seek the slow manifold so specify the eigenvalue zero. From
the linearisation matrix

[−1 1
1 −1

]
a corresponding eigenvector is

~e = (1, 1), and corresponding left-eigenvector is ~z = ~e = (1, 1),
as specified. The last parameter specifies to construct the slow
manifold to errors O

(
ε5
)
.

The procedure actually analyses the embedding system

u̇1 = −u1 + u2 − εu21 , u̇2 = u1 − u2 + εu22 .

So here the artificial parameter ε has a physical interpretation in
that it counts the nonlinearity: a term in εp will be a (p+1)th order
term in ~u = (u1, u2). Hence the specified error O

(
ε5
)

is here the
same as error O

(
|~u|6
)
.

The slow manifold The constructed slow manifold is, in terms
of the parameter s1 (and reverse ordering!),

u1 = 3/8ε3s41 − 1/2εs21 + s1 ,

u2 = −3/8ε3s41 + 1/2εs21 + s1 .

Slow manifold ODEs On this slow manifold the evolution is

ṡ1 = −3/4ε4s51 + ε2s31 :

here the leading term in s31 indicates the origin is unstable.
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Normals to isochrons at the slow manifold To project initial
conditions onto the slow manifold, or non-autonomous forcing, or
modifications of the original system, or to quantify uncertainty, use
the projection defined by the derived vector

~z1 =

[
z11
z12

]
=

[
3/2ε4s41 + 3/4ε3s31 − 1/2ε2s21 − 1/2εs1 + 1/2
3/2ε4s41 − 3/4ε3s31 − 1/2ε2s21 + 1/2εs1 + 1/2

]
.

Evaluate these at ε = 1 to apply to the original specified system,
or here just interpret ε as a way to count the order of each term.

3.2 lorenz86sm: Slow manifold of the Lorenz 1986 atmosphere model

In this case we construct the slow sub-centre manifold, analogous
to quasi-geostrophy, in order to disentangle the slow dynamics from
fast oscillations, analogous to gravity waves, in the Lorenz (1986)
model. The normals to the isochrons determine ‘balancing’ onto
the slow manifold.

u̇1 = bu2u5 − u2u3 ,
u̇2 = −bu1u5 + u1u3 ,

u̇3 = −u1u2 ,
u̇4 = −u5 ,
u̇5 = bu1u2 + u4 .

The parameter b controls the interaction between slow and fast
waves. Section 4.3 constructs its full state space normal form in
order to determine the forcing of the slow modes by the mean fast
waves.

Start by loading the procedure.

89 in_tex "../invariantManifold.tex"$

Group output expressions on b.

90 factor b;

Execute the construction of the slow manifold for this system.

91 invariantmanifold(

92 mat(( -u2*u3+b*u2*u5,

93 u1*u3-b*u1*u5,

94 -u1*u2,

95 -u5,

96 +u4+b*u1*u2 )),

97 mat(( 0,0,0 )),

98 mat( (1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0) ),

99 mat( (1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0) ),

100 4 )$

101 end;
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The matrix of the linearisation about the origin has eigenvalues
zero (multiplicity three) and ±i. We seek the slow manifold so
specify the eigenvalue zero (thrice) in the second parameter to
the procedure. Since the system is already in linearly separated
form, the slow eigenvectors are simply the three given unit vectors.
The last parameter, 4, specifies to construct the slow manifold to
errors O

(
ε4
)
, that is, to errors O

(
|~s|5
)
.

The procedure actually analyses the embedding system

u̇1 = bεu2u5 − εu2u3 ,
u̇2 = −bεu1u5 + εu1u3 ,

u̇3 = −εu1u2 ,
u̇4 = −u5 ,
u̇5 = bεu1u2 + u4 .

Consequently, here the artificial parameter ε has a physical inter-
pretation in that it counts the nonlinearity: a term in εp will be a
(p+ 1)th order term in ~s.

The slow manifold The constructed slow manifold is, in terms
of the parameters ~s (to errors O

(
ε3
)
, and reverse ordering!),

u1 = s1 ,

u2 = s2 ,

u3 = s3 ,

u4 = −bεs2s1 ,
u5 = bε2

(
− s3s22 + s3s

2
1

)
.

Slow manifold ODEs On this slow manifold the evolution is

ṡ1 = b2ε3
(
− s3s32 + s3s2s

2
1

)
− εs3s2 ,

ṡ2 = b2ε3
(
s3s

2
2s1 − s3s31

)
+ εs3s1 ,

ṡ3 = −εs2s1 .

Here the quadratic terms in s1, s2, s3 is that of nonlinear slow wave
oscillations. The b-terms modify these slow waves, reflecting the
influence of the fast dynamics (as distinct from the effects of fast
waves—these effects are quantified by Section 4.3).

Normals to isochrons at the slow manifold To project initial
conditions onto the slow manifold, or non-autonomous forcing, or
modifications of the original system, or to quantify uncertainty
(Roberts 1989, 2000), use the projection defined by the derived
vectors

~z1 =


b2ε2s22 + 1
b2ε2s2s1

0
b3ε3

(
s32 − s2s21

)
+ bε3

(
− s32 + s2s

2
1

)
+ bεs2

0

 ,
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~z2 =


−b2ε2s2s1
−b2ε2s21 + 1

0
b3ε3

(
− s22s1 + s31

)
+ bε3

(
s22s1 − s31

)
− bεs1

0

 ,

~z3 =


0
0
1

−4bε3s3s2s1
bε2
(
− s22 + s21

)

 .
Evaluate these at ε = 1 to apply to the original specified system,
or here just interpret ε as a way to count the order of each term.

Tony Roberts, November 26, 2022
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4 Oscillation in a centre manifold

Also see Sections 1.4 and 2.2.

4.1 simpleosc: Oscillatory centre manifold—separated form

Let’s try complex eigenvectors. Adjoint eigenvectors zz_ must be
the eigenvectors of the complex conjugate transpose matrix.

u̇1 = u2

u̇2 = −εu3u1 − u1
u̇3 = 5εu21 − u3

Start by loading the procedure.

102 in_tex "../invariantManifold.tex"$

In the printed output, group terms with like powers of amplitudes sj
and the complex exponential

103 factor s,exp;

Execute the construction of the centre manifold for this system.

104 invariantmanifold(

105 mat((u2,-u1-u1*u3,-u3+5*u1^2)),

106 mat((i,-i)),

107 mat((1,+i,0),(1,-i,0)),

108 mat((1,+i,0),(1,-i,0)),

109 3)$

110 end;

The centre manifold These give the location of the invariant
manifold in terms of parameters sj .

u1 = e−its2 + eits1

u2 = − e−its2i+ eits1i

u3 = e−2its22ε
(
2i+ 1

)
+ e2its21ε

(
− 2i+ 1

)
+ 10s2s1ε

Centre manifold ODEs The system evolves on the invariant
manifold such that the parameters evolve according to these ODEs.

ṡ1 = s2s
2
1ε

2
(
11/2i+ 1

)
ṡ2 = s22s1ε

2
(
− 11/2i+ 1

)
4.2 quasidde: Quasi-delay DE with Hopf bifurcation

Shows Hopf bifurcation as parameter α crosses 0 to oscillations
with base frequency two.

u̇1 = −αε2u3 − ε2u31 − 2εu21 − 4u3
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u̇2 = 2u1 − 2u2

u̇3 = 2u2 − 2u3

for small parameter α. We code the parameter α as ‘small’, and
observe it is consequently considered as ‘small squared’ because
all nonlinear terms and already ‘small’ terms, are multiplied by
another small.

Start by loading the procedure.

111 in_tex "../invariantManifold.tex"$

In the printed output, group terms with like powers of amplitudes sj ,
the complex exponential, and the parameter α.

112 factor s,exp,alpha;

Execute the construction of the slow manifold for this system (ignore
the warning messages about u1 declared, and then already defined,
as an operator).

113 invariantmanifold(

114 mat(( -4*u3-small*alpha*u3-2*u1^2-small*u1^3,

115 2*u1-2*u2,

116 2*u2-2*u3 )),

117 mat((2*i,-2*i)),

118 mat((1,1/2-i/2,-i/2),(1,1/2+i/2,+i/2)),

119 mat((1,-i,-1-i),(1,+i,-1+i)),

120 3)$

121 end;

The centre manifold These give the location of the invariant
manifold in terms of parameters s1, s2 (complex conjugate for real
solutions).

u1 = e−4its22ε
(
− 7/12i+ 1/12

)
+ e−2its2 + e4its21ε

(
7/12i+

1/12
)

+ e2its1 − s2s1ε
u2 = e−4its22ε

(
− 1/12i+ 1/4

)
+ e−2its2

(
1/2i+ 1/2

)
+

e4its21ε
(
1/12i+ 1/4

)
+ e2its1

(
− 1/2i+ 1/2

)
− s2s1ε

u3 = e−4its22ε
(
1/12i+ 1/12

)
+ 1/2 e−2its2i+ e4its21ε

(
− 1/12i+

1/12
)
− 1/2 e2its1i− s2s1ε

Centre manifold ODEs The system evolves on the invariant
manifold such that the parameters evolve according to these ODEs.

ṡ1 = s2s
2
1ε

2
(
− 16/15i− 1/5

)
+ s1αε

2
(
1/5i+ 1/10

)
ṡ2 = s22s1ε

2
(
16/15i− 1/5

)
+ s2αε

2
(
− 1/5i+ 1/10

)
Hence there is a supercritical Hopf bifurcation as parameter α
increases through zero.
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4.3 lorenz86nf: Paradoxically justify a slow manifold despite being proven to
not exist

Lorenz (1986) proposed the following simple system in order to
understand aspects of the quasi-geostrophic approximation in at-
mospheric dynamics.

u̇1 = bu2u5 − u2u3 ,
u̇2 = −bu1u5 + u1u3 ,

u̇3 = −u1u2 ,
u̇4 = −u5 ,
u̇5 = bu1u2 + u4 .

The parameter b controls the interaction between slow and fast
dynamics. As in Section 3.2, it appears that a slow manifold of
quasi-geostrophy exists and is constructible. Nonetheless, Lorenz
& Krishnamurthy (1987) proved that a slow manifold cannot exist
for this system!

A resolution of this apparent paradox comes via backwards theory
(Roberts 2022, §2.5). There are systems exponentially close to
the above Lorenz86 system (that is, asymptotically the same to
all orders in |~u|) which do possess a slow manifold. Hence the
properties that cause the non-existence are exponentially small, they
are beyond all orders, and so are likely to be physically irrelevant—
they are likely to be smaller than the mathematical modelling errors
of the original system.

Let’s see this resolution by constructing, to any specified order, a
system that has a slow manifold and is close to the Lorenz86 system.
We do this by constructing a coordinate transform of the 5D state
space. Start by loading the procedure.

122 in_tex "../invariantManifold.tex"$

Group output expressions on b.

123 factor b;

Execute the construction of the coordinate transform for this system.

124 invariantmanifold(

125 mat(( -u2*u3+b*u2*u5,

126 u1*u3-b*u1*u5,

127 -u1*u2,

128 -u5,

129 +u4+b*u1*u2 )),

130 mat(( 0,0,0,i,-i )),

131 mat( (1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),

132 (0,0,0,1,-i), (0,0,0,1,+i) ),

133 mat( (1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0),

134 (0,0,0,1,-i), (0,0,0,1,+i) ),
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135 4 )$

136 end;

The matrix of the linearisation about the origin has eigenvalues
zero (multiplicity three) and ±i, as specified for the eigenvalues in
the second parameter to the procedure. Corresponding eigenvectors
are simply the three unit vectors and the two complex eigenvectors
of the fast waves. The last parameter, 4, specifies to construct the
slow manifold to errors O

(
ε4
)
, that is, to errors O

(
|~s|5
)
.

The procedure actually analyses the embedding system

u̇1 = bεu2u5 − εu2u3 ,
u̇2 = −bεu1u5 + εu1u3 ,

u̇3 = −εu1u2 ,
u̇4 = −u5 ,
u̇5 = bεu1u2 + u4 .

The coordinate transform The constructed coordinate trans-
form is, in terms of the slow variables ~s and a time-dependent basis
(to errors O

(
ε3
)
, and reverse ordering!),

u1 = b2ε2
(
− 1/2 e−2its25s1 − 1/2 e2its24s1

)
+ bε

(
− e−its5s2 −

eits4s2
)

+ s1 ,

u2 = b2ε2
(
− 1/2 e−2its25s2 − 1/2 e2its24s2

)
+ bε

(
e−its5s1 +

eits4s1
)

+ s2 ,

u3 = bε2
(

e−its5s
2
2i− e−its5s

2
1i− eits4s

2
2i+ eits4s

2
1i
)

+ s3 ,

u4 = b2ε2
(
1/4 e−its5s

2
2 − 1/4 e−its5s

2
1 + 1/4 eits4s

2
2 −

1/4 eits4s
2
1

)
− bεs2s1 + e−its5 + eits4 ,

u5 = b2ε2
(
− 1/4 e−its5s

2
2i+ 1/4 e−its5s

2
1i+ 1/4 eits4s

2
2i−

1/4 eits4s
2
1i
)

+ bε2
(
− s3s22 + s3s

2
1

)
+ e−its5i− eits4i .

Transformed ODEs In the variables ~s the evolution is

ṡ1 = b2ε3
(
− s3s32 + s3s2s

2
1

)
− εs3s2 ,

ṡ2 = b2ε3
(
s3s

2
2s1 − s3s31

)
+ εs3s1 ,

ṡ3 = 2b2ε3s5s4s2s1 − εs2s1 ,
ṡ4 = b2ε2

(
− 1/2s4s

2
2i+ 1/2s4s

2
1i
)
,

ṡ5 = b2ε2
(
1/2s5s

2
2i− 1/2s5s

2
1i
)
.

When s4 = s5 = 0 we recover precisely the same slow manifold as
constructed by Section 3.2. Hence the above system of ~u = · · · and
~̇s = · · · together both has a slow manifold, and is O

(
|~s|5
)

close to
the original Lorenz86 system. Such construction can proceed to any
order, and so the above closeness of a system with a slow manifold
holds to all orders in |~s|.
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Also of interest is the red term in the ṡ3 ode: it shows that the
evolution of the slow variables, s1, s2, s3, is affected by the presence
of fast waves, s4, s5 non-zero. That is, the evolution on and off the
slow manifold differ by this term (and similar higher-order terms).
Users of slow models among fast waves need to be aware of this
physical feature.

4.4 stoleriu2: Oscillatory centre manifold among stable and unstable modes

Consider the case Stoleriu (2012) calls (3π/4, k2/2).

u̇1 = u2 ,

u̇2 = −σu3 + 1− cosu1 ,

u̇3 = u4 ,

u̇4 = (u3 + 1
σ ) sinu1

Eigenvalues are ±1 and ±i, so we find the centre manifold among
stable and unstable modes.

Start by loading the procedure.

137 in_tex "../invariantManifold.tex"$

In the printed output, group terms with like powers of amplitudes sj
and the complex exponential

138 factor s,exp;

Execute the construction of the centre manifold for Stoleriu’s system.
But use Taylor expansions for trigonometric functions in the odes,
and multiply higher-orders of nonlinearity by small to better (not
best) count and manage nonlinearities.

139 invariantmanifold(

140 mat(( u2,

141 sigma*u3+u1^2/2-small*u1^4/24,

142 u4,

143 (u3+1/sigma)*(u1-small*u1^3/6)

144 )),

145 mat(( i,-i )),

146 mat( (sigma,i*sigma,-1,-i),(sigma,-i*sigma,-1,+i) ),

147 mat( (+i,-1,-i*sigma,sigma),(-i,-1,+i*sigma,sigma) ),

148 3)$

149 end;

Code adjoint eigenvectors zz_ that are eigenvectors of the complex

conjugate transpose matrix of the linear matrix

[ 0 1 0 0
0 0 σ 0
0 0 0 1

1/σ 0 0 0

]
. Here

analyse to errors O
(
ε3
)
.

The procedure analyses the embedding system

u̇1 = u2 ,
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u̇2 = −1/24ε2u41 + 1/2εu21 + σu3 ,

u̇3 = u4 ,

u̇4 = ε2
(
− 1/6σ−1u31 − 1/6u31u3

)
+ εu1u3 + σ−1u1

The centre manifold These give the location of the invariant
manifold in terms of (complex conjugate) parameters s1, s2.

u1 = e−its2σ − 1/5 e−2its22εσ
2 + eits1σ − 1/5 e2its21εσ

2 + 2s2s1εσ
2

u2 = − e−its2iσ + 2/5 e−2its22εiσ
2 + eits1iσ − 2/5 e2its21εiσ

2

u3 = − e−its2 + 3/10 e−2its22εσ − eits1 + 3/10 e2its21εσ − s2s1εσ
u4 = e−its2i− 3/5 e−2its22εiσ − eits1i+ 3/5 e2its21εiσ

Centre manifold ODEs The system evolves on the centre man-
ifold such that the parameters evolve according to these ODEs.

ṡ1 = −6/5s2s
2
1ε

2iσ2

ṡ2 = 6/5s22s1ε
2iσ2

These establish that the leading effect of the nonlinearities is to cause
a frequency down-shift in the oscillations on the centre manifold.
Higher-order analysis indicates the only effect is a frequency shift
of the nonlinear oscillations.

4.5 bauer2021: Rephrase phase-averaging as nonlinear normal modes

Bauer et al. (2021) introduced a higher order phase averaging
method for nonlinear oscillatory systems. Here we construct cognate
high-order approximations by constructing the modulation of the
nonlinear normal modes in the system. Their example system (3.2)
may be rewritten in variables ~u(t) as

u̇1 = ωRu2 , u̇2 = −ωRu1 +
λ

ωR
u1u5 ,

u̇3 = ωRu4 , u̇4 = −ωRu3 +
λ

ωR
u3u5 ,

u̇5 = ωZu6 , u̇6 = −ωZu5 +
λ

ωz
(u21 + u23).

Bauer et al. (2021), their §4, chose base frequencies ωR = π and
ωZ = 2π so we do so also.

The linearisation at the origin then has the following modes:

• eigenvalues ±iπ with corresponding eigenvectors proportional
to (1,±i, 0, 0, 0, 0) and (0, 0, 1,±i, 0, 0);

• eigenvalues ±2iπ with corresponding eigenvector proportional
to (0, 0, 0, 0, 1,±i).
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We model the nonlinear interaction of these six modes over long
times—these are the nonlinear normal modes. The analysis con-
structs a full state space coordinate transformation mapping from
the complex-valued modulation variables ~s = (s1, . . . , s6) to the
original variables ~u = (u1, . . . , u6), and find the corresponding evo-
lution of ~s. The modulation variables ~s are ‘slow’ because the
coordinate transform uses time-dependent (rotating) basis vectors
that account for the fast oscillation in ~u. Hence the new variables ~s
are good variables for making long-term predictions and forming
understanding.

Start by loading the procedure.

150 in_tex "../invariantManifold.tex"$

In the printed output, group terms depending upon real or imaginary
coefficient, and factor out π.

151 factor pi,i;

The following procedure call constructs the time-dependent coordi-
nate transform for this system.

152 invariantmanifold(

153 mat((pi*u2,-pi*u1+u1*u5/pi

154 ,pi*u4,-pi*u3+u3*u5/pi

155 ,2*pi*u6,-2*pi*u5+(u1^2+u3^2)/pi/2 )),

156 mat((pi*i,-pi*i,pi*i,-pi*i,2*pi*i,-2*pi*i)),

157 mat((1,+i,0,0,0,0),(1,-i,0,0,0,0)

158 ,(0,0,1,+i,0,0),(0,0,1,-i,0,0)

159 ,(0,0,0,0,1,+i),(0,0,0,0,1,-i)),

160 mat((1,+i,0,0,0,0),(1,-i,0,0,0,0)

161 ,(0,0,1,+i,0,0),(0,0,1,-i,0,0)

162 ,(0,0,0,0,1,+i),(0,0,0,0,1,-i)),

163 3 )$

164 end;

The procedure then actually analyses the embedding system

u̇1 = πu2 u̇2 = −πu1 + π−1εu1u5

u̇3 = πu4 u̇4 = −πu3 + π−1εu3u5

u̇5 = 2πu6 u̇6 = −2πu5 + π−1ε
(
1/2u21 + 1/2u23

)
Hence the procedure’s artificial parameter ε is precisely the physical
parameter λ of Bauer et al. (2021). As specified, the construction
is here done to errors O

(
ε3
)
.

The invariant manifold Here these give the reparametrisation
of the state space ~u in terms of modulation variables sj , via rotating
basis vectors.

u1 = e−iπts2 + eiπts1 + π−2ε
(
1/4 e−iπts6s1 − 1/8 e−3iπts6s2 +

1/4 eiπts5s2 − 1/8 e3iπts5s1
)
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u2 = i
(
− e−iπts2 + eiπts1

)
+ π−2iε

(
1/4 e−iπts6s1 +

3/8 e−3iπts6s2 − 1/4 eiπts5s2 − 3/8 e3iπts5s1
)

u3 = e−iπts4 + eiπts3 + π−2ε
(
1/4 e−iπts6s3 − 1/8 e−3iπts6s4 +

1/4 eiπts5s4 − 1/8 e3iπts5s3
)

u4 = i
(
− e−iπts4 + eiπts3

)
+ π−2iε

(
1/4 e−iπts6s3 +

3/8 e−3iπts6s4 − 1/4 eiπts5s4 − 3/8 e3iπts5s3
)

u5 = e−2iπts6 + e2iπts5 + π−2ε
(
1/16 e−2iπts24 + 1/16 e−2iπts22 +

1/16 e2iπts23 + 1/16 e2iπts21 + 1/2s4s3 + 1/2s2s1
)

u6 = i
(
− e−2iπts6 + e2iπts5

)
+ π−2iε

(
1/16 e−2iπts24 +

1/16 e−2iπts22 − 1/16 e2iπts23 − 1/16 e2iπts21
)

Invariant manifold ODEs The system evolves according to
these ODEs that characterise how the modulation of the oscillations
evolve in state space due to their nonlinear interaction.

ṡ1 = −1/2π−1iεs5s2 + π−3iε2
(
− 1/16s6s5s1 − 1/4s4s3s1 −

1/32s23s2 − 9/32s2s
2
1

)
ṡ2 = 1/2π−1iεs6s1 + π−3iε2

(
1/16s6s5s2 + 1/32s24s1 + 1/4s4s3s2 +

9/32s22s1
)

ṡ3 = −1/2π−1iεs5s4 + π−3iε2
(
− 1/16s6s5s3 − 9/32s4s

2
3 −

1/32s4s
2
1 − 1/4s3s2s1

)
ṡ4 = 1/2π−1iεs6s3 + π−3iε2

(
1/16s6s5s4 + 9/32s24s3 + 1/4s4s2s1 +

1/32s3s
2
2

)
ṡ5 = π−1iε

(
−1/4s23−1/4s21

)
+π−3iε2

(
−1/16s5s4s3−1/16s5s2s1

)
ṡ6 = π−1iε

(
1/4s24 + 1/4s22

)
+ π−3iε2

(
1/16s6s4s3 + 1/16s6s2s1

)
These all preserve complex conjugation, and so preserve reality.
All coefficients are pure imaginary, so the dominant effect of the
modulation is to modify the frequency of the oscillations. Ampli-
tude modifications arise due to the phase relationship between the
modes.
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5 Stable invariant manifolds

Also see Section 1.5.

5.1 stable2d: Stable manifold of a 2D system

Let’s construct the 1D stable manifold of the system, for small
bifurcation parameter ε,

u̇1 = −1
2u1 − u2 − u

2
1u2 ,

u̇2 = −u1 − 2u2 + εu2 − u22 .

Start by loading the procedure.

165 in_tex "../invariantManifold.tex"$

Execute the construction of the stable manifold for this system.

166 invariantmanifold(

167 mat(( -u1/2-u2-small*u1^2*u2,

168 -u1-2*u2+small*epsilon*u2-u2^2 )),

169 mat(( -5/2 )),

170 mat( (1,2) ),

171 mat( (1,2) ),

172 5 )$

173 end;

The matrix
[
−1
2 −1
−1 −2

]
of the linearisation about the origin has eigen-

values 0 and −5/2. We seek the 1D stable manifold so specify the
eigenvalue −5/2 in the second parameter to the procedure. Due
to symmetry, corresponding eigenvectors are ~e1 = ~z1 = (1, 2) in
the third and fourth parameter. The last parameter, 5, specifies to
construct the stable manifold to errors O

(
ε5
)
.

To consistently count the orders of the nonlinearities we multiply
the cubic term by small. To treat parameter ε as small, we also
multiply it by small so it becomes effectively a second-order order-
parameter (useful for pitchfork bifurcations). So, the procedure
actually analyses the embedding system

u̇1 = −ε2u21u2 − 1/2u1 − u2 ,
u̇2 = ε2εu2 − εu22 − u1 − 2u2 .

The stable manifold The constructed stable manifold is, in
terms of the parameter s1 (to error O

(
ε4
)
, and reverse ordering!,

and in terms of the ugly e

(
−5t/2

)
= e−5t/2 which needs fixing

sometime!),

u1 = ε3
(
53152/140625 e−10ts41 + 88/625 e−5ts21ε

)
+

ε2
(
838/1875 e

(
−15t/2

)
s31 + 8/25 e

(
−5t/2

)
s1ε
)

+

8/25ε e−5ts21 + e

(
−5t/2

)
s1 ,
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u2 = ε3
(
122444/140625 e−10ts41 + 76/625 e−5ts21ε

)
+

ε2
(
2116/1875 e

(
−15t/2

)
s31 − 4/25 e

(
−5t/2

)
s1ε
)

+

36/25ε e−5ts21 + 2 e

(
−5t/2

)
s1 .

Observe the linear terms in s1 all have e−5t/2, and the quadratic
terms in s1 all have e−5t, and so on. Consequently, we could in
principle write the stable manifold in terms of, say, the variables
x1 = s1e

−5t/2 giving

u1 = ε3
(
53152/140625x41 + 88/625x21ε

)
+ ε2

(
838/1875x31 +

8/25x1ε
)

+ 8/25εx21 + x1 ,

u2 = ε3
(
122444/140625x41 + 76/625x21ε

)
+ ε2

(
2116/1875x31 −

4/25x1ε
)

+ 36/25εx21 + 2x1 .

This would be a more usual parametrisation. But here let’s remain
with s1 and remember to interpret s1 as modifying the exponential
decay e−5t/2 on this stable manifold.

Stable manifold ODEs On the stable manifold the evolution is

ṡ1 = −8/125ε4s1ε
2 + 4/5ε2s1ε .

That the ode for s1 is linear is a consequence of the Hartmann-
Grobman Theorem. It just reflects that the decay-rate of the
stable mode varies with parameter ε: evidently, the decay rate is
approximately −5

2 + 4
5ε−

8
125ε

2.
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6 Invariant manifolds in delay DEs

Also see Section 1.2

6.1 simple1dde: Simple DDE with a Hopf bifurcation

Model a delayed ‘logistic’ system in one variable with

du

dt
= −(1 + a)[1 + u(t)]u(t− π/2),

for small parameter a. We code the parameter a as ‘small’, and
observe it is consequently considered as ‘small squared’ because all
nonlinear terms and already ‘small’ terms are multiplied by small.

Start by loading the procedure.

174 in_tex "../invariantManifold.tex"$

In the printed output, group terms with like powers of amplitudes sj ,
the complex exponential, and the parameter a.

175 factor s,exp,a;

Execute the construction of the slow manifold for this system (ignore
the warning messages about u1 declared, and then already defined,
as an operator).

176 invariantmanifold(

177 mat(( -(1+small*a)*(1+u1)*u1(pi/2) )),

178 mat((i,-i)),

179 mat((1),(1)),

180 mat((1),(1)),

181 3)$

182 end;

The marginal modes are e±it so nominate the frequencies ±1. The
eigenvectors are just 1 ·e±it. Because for delay differential equations
the time dependence e±iωt is an integral part of the definition of the
eigenvector; hence the coded eigenvectors can be the same, as here,
because they are differentiated through the time dependence e±iωt.

The code works for orders higher than cubic, but is slow: takes
about a minute per iteration.

The procedure actually analyses the embedding system

du

dt
= −[1 + εu(t)]u(t− π/2)− ε2a[1 + u(t)]u(t− π/2).

The centre manifold These give the location of the invariant
manifold in terms of parameters sj .

u1 = e−its2 + e−2its22ε
(
1/5i+ 2/5

)
+ eits1 + e2its21ε

(
−1/5i+ 2/5

)
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Centre manifold ODEs The system evolves on the invariant
manifold such that the parameters evolve according to these ODEs.

ṡ1 = s2s
2
1ε

2
(
− 2/5iπ − 12/5i− 6/5π + 4/5

)
/
(
π2 + 4

)
+

s1aε
2
(
4i+ 2π

)
/
(
π2 + 4

)
ṡ2 = s22s1ε

2
(
2/5iπ + 12/5i− 6/5π + 4/5

)
/
(
π2 + 4

)
+ s2aε

2
(
−

4i+ 2π
)
/
(
π2 + 4

)
6.2 logistic1dde: Logistic DDE displays a Hopf bifurcation

Form a centre manifold for the delayed ‘logistic’ system in one
variable, for delay τ = 3π/4 , with

du

dt
= −u(t)− (

√
2 + a)u(t− τ) + µu(t− τ)2 + νu(t− τ)3,

for and nonlinearity parameters µ and ν, and small parameter a.
Numerical computation of the spectrum indicates that the system
has a Hopf bifurcation as parameter a crosses zero.

We code the parameter a as ‘small’, and observe it is consequently
considered as ‘small squared’ because all nonlinear terms, and
already ‘small’ terms, are multiplied by ε (small).

Start by loading the procedure.

183 in_tex "../invariantManifold.tex"$

In the printed output, group terms with like powers of amplitudes sj ,
the complex exponential, and the parameters.

184 factor s,exp,a,mu,nu;

Execute the construction of the slow manifold for this system (ignore
the warning messages about u1 declared, and then already defined,
as an operator).

185 invariantmanifold(

186 mat(( -u1-(sqrt(2)+small*a)*u1(3*pi/4)

187 +mu*u1(3*pi/4)^2 +small*nu*u1(3*pi/4)^3 )),

188 mat((i,-i)),

189 mat((1),(1)),

190 mat((1),(1)),

191 3)$

192 end;

The marginal modes are e±it so nominate the frequencies ±1. The
eigenvectors are just 1 ·e±it. Because for delay differential equations
the time dependence e±iωt is an integral part of the definition of the
eigenvector; hence the coded eigenvectors can be the same, as here,
because they are differentiated through the time dependence e±iωt.

The procedure actually analyses the embedding system

u̇1 = −aε2u1(t−τ)+µεu1(t−τ)2+νε2u1(t−τ)3−
√

2u1(t−τ)−u1 .
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The centre manifold These give the location of the invariant
manifold in terms of parameters sj .

u1 = e−its2 + e−2its22µε
(
− 0.07901i+ 0.2698

)
+ eits1 +

e2its21µε
(
0.07901i+ 0.2698

)
+ 0.8284s2s1µε

Centre manifold ODEs The system evolves on the invariant
manifold such that the parameters evolve according to these ODEs.

ṡ1 = s2s
2
1µ

2ε2
(
− 0.1303i− 0.5209

)
+ s2s

2
1νε

2
(
− 0.1262i−

0.7206
)

+ s1aε
2
(
0.04205i+ 0.2402

)
ṡ2 = s22s1µ

2ε2
(
0.1303i− 0.5209

)
+ s22s1νε

2
(
0.1262i− 0.7206

)
+

s2aε
2
(
− 0.04205i+ 0.2402

)
Hence the centre manifold model predicts a supercritical Hopf
bifurcation as parameter a increases through zero.
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